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Summary

Assays to measure biomarkers are commonly subject to large amounts of measurement
error and known detection limits. Studies with longitudinal biomarker measurements may
use multiple assays in assessing outcome. I propose an approach for jointly modeling repeated
measures of multiple assays when these assays are subject to measurement error and known
lower detection limits. A commonly used approach is to perform an initial assay with a larger
lower detection limit on all repeated samples, followed by only performing a second more
expensive assay with a lower minimum level of detection when the initial assay value is below
its lower limit of detection. I show how simply replacing the initial assay measurement with
the second assay measurement may be a biased approach and investigate the performance of
the proposed joint model in this situation. Additionally, I compare the performance of the
joint model with an approach which only uses the initial assay measurements in analysis.
Further, I consider alternative designs to only performing the second assay when the initial
assay measurement is below its lower detection limit. For example, I show the advantages
of performing the second assay at random without regard to the initial assay measurement
over a design in which the second assay is only performed when the initial assay is below its
lower limit of detection. The methodology is illustrated with a recent study examining the
use of a vaccine in treating macaques with simian immunodeficiency virus.

Key Words: Below the level of detection, Measurement error, Linear mixed models, Random
effects models, Repeated measures data, Simian immunodeficiency virus.

1 Introduction

Biomarkers are commonly used as the endpoints in longitudinal clinical or laboratory studies.

The assays for these biomarkers are often subject to large amounts of measurement error

and known detection limits. More sensitive assays, which are more expensive, usually have

smaller amounts of measurement error with lower known minimum detection limits. One

commonly used design strategy is to perform an initial inexpensive assay on all longitudinally

collected samples, followed by a second more expensive assay with a lower minimum level of
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detection on the subset of measurements for which the inexpensive assay is below its lower

limit of detection. The motivating example for this methodological work is a recent study

assessing the effects of a new therapeutic vaccine on maintaining reduced levels of viral

load after anti-retroviral therapy (ART) is terminated in simian immunodeficiency virus

(SIV) induced macaques (Von Gegerfelt et al., 2007). A group of 12 SIVmac251-infected

macaques were treated with ART, and given a therapeutic vaccine at the end of ART.

Viral load (RNA copy number) was measured from longitudinal plasma samples during an

SIV chronic phase, during the period of ART and vaccination treatment, and after ART

was terminated (referred to as the release period). Of interest was assessing whether viral

load among vaccinated animals remained low after ART was stopped (release period), or

alternatively, showed a quick rebound to levels of viral load seen during the chronic SIV

phase. A concurrent control group of 11 SIVmac251-infected macaques was also followed in

a similar manner with the exception that no vaccine was given at the end of the ART period.

Of interest is comparing the difference between viral load during the release period and the

chronic SIV period in vaccinated and unvaccinated macaques.

For both vaccinated and unvaccinated animals, samples of plasma were repeatedly col-

lected at irregularly spaced intervals before and after ART. A median of 45 plasma samples

(range: 26 to 61) were taken on each animal during the SIV chronic, ART, and release pe-

riods. Initially, viral load was assessed from samples at each time point using a commonly

used assay with a known lower limit of detection of 20,000 copies per ml. Viral load was

re-assessed with a second assay when (i) the measurement of the initial assay was below

its lower limit of detection, and when (ii) there was sufficient blood sample to perform the

second assay. In most cases, this second assay had a lower limit of detection of 4,000 copies

per ml. Figure 1 shows the log (base 10) transformed viral load profile of the first 4 animals

in the vaccinated cohort. Values from the initial assay are denoted as 1’s with the top dotted

horizontal line being the lower limit of detection for this assay. Values from the second assay

are denoted as 2’s with the dashed-dotted horizontal line showing the lower limit of detection
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for this more sensitive assay. The bottom solid line delineates the SIV chronic phase while

the bottom dashed line shows the release period; the area between these two horizonal lines

delineates the ART period. The figures visually suggest that for the vaccinated animal, low

levels of viral load while being treated with ART are at least partially maintained in the

release period. Of interest is on determining whether this is indeed a real finding, or whether

it is consistent with the statistical variation in the process. A joint modeling approach will

be used to address this question. This modeling approach will then be compared with sim-

pler approaches in which (i) only data on the initial assay is used and (ii) the initial assay is

replaced by the second assay when the results of the second assay are available.

There is a sizable literature on modeling longitudinal data from a single known detection

limit. Hughes (1999) presented a flexible linear mixed models for a longitudinal outcome

with known detection limits. Lyles et al. (2000) presented a linear mixed model for longi-

tudinal data with known detection limits subject to informative dropout. Theibaut et al.

(2005) proposed a joint model of bivariate longitudinal data where one assay was subject

to a known lower detection limit. Moulton and Halsey (1995) and Moulton et al. (2002)

proposed mixture models which incorporated a higher proportion of assay values below the

lower detection limit than what would be expected based on a censored Gaussian distribu-

tion. There has been little work in simultaneously modeling multiple assays with different

known detection limits. In this paper, new methodology is proposed for jointly modeling

longitudinal data from two assays when both assays are subject to measurement error as well

as different known lower detection limits. Further, I investigate the design issue of whether

it is best to perform the second more sensitive assay only when the initial assay is below its

lower limit of detection (as was done in the SIV/vaccine study) or, alternatively, whether it

is better to measure the second assay on a comparable number of samples without regard

to the initial assay values. In Section 2, I present the modeling strategy. Section 3 presents

an analysis of the SIV/vaccine dataset using the joint modeling approach along with simpler

analysis strategies in which only the initial assay is used and where the initial assay is re-
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placed by a second more sensitive assay, when the second assay is performed. In Section 4,

I examine properties of the joint modeling approach with simulations corresponding to the

example as well as some additional targeted simulations. I also compare the joint modeling

approach with the simpler approaches in terms of bias and efficiency. A discussion follows

in Section 5.

2 Modeling Framework

Initially, I present the model in the general framework of Laird and Ware (1982),

Yij = X ijβ + Zijbi + εij , (1)

where Yij is the jth measurement for the ith individual, β is a vector of fixed effects, and

bi is a vector of random effects for the ith subject. Let ni be the number of longitudinal

measurements on the ith subject (j = 1, 2, ..., ni) and I be the number of individuals (i =

1, 2, ..., I). I denote, X ij and Zij as design matrices associated with the fixed and random

effects, respectively. Further, I assume that bi and εij are statistically independent and that

bi ∼ N(0, D) and εij ∼ N(0, σ2), where D is the variance matrix for the random effects

and σ2 is a scalar variance for the error term (i.e, the residual variance). The measurement

Yij is not observed directly, but rather is measured using either one or two assays which are

subject to measurement error and lower detection limits. Let A1ij and A2ij be two assay

measurements which are attempting to measure Yij. I assume that the two assays have

measurement errors δ1ij and δ2ij , which are assumed independent from each other as well

as from bi and εij , and are assumed to follow Gaussian distributions with mean zero and

variances σ2
1 and σ2

2 . Thus, the distribution of the difference in the two assays is

A2ij − A1ij ∼ N(∆, σ2
1 + σ2

2), (2)

where the parameter ∆ measures a systematic difference in the two assays that may be due to

lack of calibration between the two assays. Equation (2) assumes that the difference between
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A2ij and A1ij is constant and does not depend on the values of the two assays. Effectively, this

implies that the slope between the two measurements is 1. Since in the SIV/vaccine study,

we measure the second assay only when the first is below detectable limits, and therefore

there are no cases when both assays are simultaneously directly measured, it is very difficult

to estimate more than a shift in the means between the two assays. The two assay values are

subject to different lower limits of detection C1 and C2. Specifically, we observe A∗
1ij = A1ij

when A1ij > C1 and A∗
1ij = C1 when A1ij ≤ C1. Further, we observe A∗

2ij = A2ij when

A2ij > C2 and A∗
2ij = C2 when A2ij ≤ C2.

A special case of this formulation can be used for analyzing the SIV longitudinal data. I

denote Yij as the true log-transformed viral load at the jth time point for the ith animal in

either the vaccinated or control group. I consider the simple linear mixed model (which is a

special case of (1)) for analysis,

Yij = β0 + β1Dij + β2Rij + bi + εij (3)

where bi ∼ N(0, σ2
b ) and εij ∼ N(0, σ2). Further, Dij is an indicator which is equal to one

when the ith animal at the time of the jth observation is on ART and Rij is an indicator

which is equal to one when the ith animal at the time of the jth measurement is in the

release period after ART is terminated. For the SIV/vaccine study, the inexpensive assay

A1ij measured from samples at all time points has measurement error δ1ij and a known lower

detection limit of 20,000 copies per ml on the original scale or 4.8 on the log-base 10 scale

(C1 = 4.8). The second assay, which has the lower detection limit of only 4,000 copies per

ml or 3.6 on the log-base 10 scale (C2 = 3.6) was only performed when the initial assay

was below the lower limit of detection (C1 = 4.8) and there was sufficient additional plasma

sample to perform the assay.

Without replication of an assay at a particular time point, it is difficult or impossible to

uniquely identify measurement error from residual variance without making unverifiable ad-

ditivity assumptions about the two sources of variation. However, we are able to reliably iden-
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tify, σ2∗
1 = σ2

1 +σ2, σ2∗
2 = σ2

2 +σ2, and ρ∗ = corr(δ1ij+εij , δ2ij +εij) = σ2/(
√

σ2
1 + σ2

√
σ2

2 + σ2.

Note that σ2 = ρ∗σ∗
1σ

∗
2, σ2

1 = σ2
1
∗ − ρ∗σ∗

1σ
∗
2 and σ2

2 = σ2
2
∗ − ρ∗σ∗

1σ
∗
2.

Denote µij = X ijβ + Zijbi and let S1ij and S2ij be indicators of whether the initial and

second assays are performed for the jth measurement on the ith subject, respectively. In

our formulation, the initial assay is performed at all measurements (i.e., S1ij = 1 for all i

and j). For the general model (1 and 2), maximum-likelihood estimation can be performed

by maximizing the log-likelihood logL =
I∏

i=1
logLi, where

Li =
∫
b

[ ni∏
j=1

{
f(µij ,µij+∆),(σ2

1
∗
,σ2

2
∗
,ρ∗)(A

∗
1ij , A

∗
2ij|b)(A∗

1ij>C1)(A∗
2ij>C2)S2ij

× F(µij ,µij+∆),(σ2
1
∗
,σ2

2
∗
,ρ∗)(A

∗
1ij , A

∗
2ij|b)(A∗

1ij=C1)(A∗
2ij=C2)S2ij

×
{
F

(µij+ρ∗
σ∗
1

σ∗
2

(A∗
2ij−µij−∆),σ2

1
∗
(1−ρ∗2)

(C1|b)fµij+∆,σ2
2
∗(A∗

2ij |b)
}(A∗

1ij=C1)(A∗
2ij>C2)S2ij

×
{
F

µij+∆+ρ∗
σ∗
2

σ∗
1

(A∗
1ij−µij),σ2

2
∗
(1−ρ∗2)

(C2|b)fµij ,σ2
1
∗(A∗

1ij |b)
}(A∗

1ij>C1)(A∗
2ij=C2)S2ij

× fµij ,σ2
1
∗(A∗

1ij |b)(A∗
1ij>C)(1−S2ij )Fµij ,σ2

1
∗(C1|b)(A∗

1ij=C1)(1−S2ij )
}]

g(b)db, (4)

where f(µy ,µz),(σ2
y ,σ2

z ,ρ)(y, z) and F(µy ,µz),(σ2
y ,σ2

z ,ρ)(y, z) denote bivariate Gaussian densities and

cumulative distribution functions with means (µy,µz), variances (σ2
y , σ2

z), and correlation

ρ. Further, fµy ,σ2
y
(y) and Fµy ,σ2

y
(y) denote the Gaussian density and cumulative distribution

functions with mean µy and variance σ2
y , and g(b) denote a multivariate normal density

function with mean 0 and variance D.

When only one assay is available on each measurement as in Hughes (1999), an individ-

ual’s contribution to the likelihood corresponding to model (1) reduces to

Li =
∫
b

ni∏
j=1

{
fµij ,σ2

1
∗(A∗

1ij |b)A∗
1ij>CFµij ,σ2

1
∗(C1|b)A∗

1ij=C1
}
g(b)db. (5)
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For high dimensional random effects, Monte-Carlo techniques such as a Monte-Carlo EM

algorithm (McCulloch, 1997) can be used for maximizing (4) or (5). In fact, Hughes (1999)

proposed just such a technique for maximizing (5). For a single random intercept as in (3),

I found that a simple trapezoidal rule worked well for evaluating the integrals in (4) and (5).

Specifically, I summed over 800 equally spaced points between -4 and 4 standard deviations in

the random intercept. Further, the likelihoods were maximized using quasi-Newton-Rhapson

algorithm implemented in GAUSS (Aptech, 1992).

For the SIV/vaccine data analysis, variance estimation were based on asymptotic approx-

imations (i.e., inverting the information matrix).

3 Application

I applied various modeling approaches to the vaccinated animals (I = 12) in order to estimate

the mean change in log-tranformed viral load from the chronic SIV period to the period on

ART and to the release period after ART was terminated. Specifically, using (3), I fit

(i) a joint model, (ii) a model which used only the initial assay (single assay), and (iii) a

model which replaced the initial assay measurement with the second more sensitive assay

measurement when the initial assay result was below its lower detection limit and when there

was sufficient sample available to perform the second assay (replacement assay). Samples

were available in 48% of the samples for which the initial assay was below the lower-limit

of detection. The last approach involves maximizing a likelihood, where the individual

contribution is

Li =
∫
b

[ ni∏
j=1

{
fµij ,σ2

1
∗(A∗

1ij |b)(A∗
1ij>C)(1−S2ij )Fµij ,σ2

1
∗(C1|b)(A∗

1ij=C1)(1−S2ij )

× fµij ,σ2
2
∗(A∗

2ij |b)(A∗
2ij>C)S2ij Fµij ,σ2

2
∗(C2|b)(A∗

2ij=C2)S2ij

}]
g(b)db. (6)

Although appealing for its simplicity, the replacement analysis is biased even with ∆ = 0

since it does not explicitly account for the probabilistic mechanism of selecting samples for
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performing the second assay. Note that the likelihood for the joint model given by equation

(4) does account for this selection, while (6) does not. The selection bias in the replacement

analysis is demonstrated with a simple example in the Appendix.

Table 1 presents the results of parameter estimation from the three different modeling

approaches fit to the vaccinated animals’ data. The joint model which incorporated both

the initial assay (with a known detection limit of 20,000 copies per ml) and the second more

sensitive assay (with a known detection limit of 4,000 copies per ml) showed a substantial

reduction in viral load from the SIV chronic phase to the ART period (i.e., β̂1 = −2.42).

Although, there was a slight rebound in viral load during the release period (period after ART

is terminated), viral load was still substantially lower than during the chronic SIV period

(β̂2 = −0.97), suggesting a benefit to the therapeutic vaccine. The joint model showed a

large correlation between the two assays ( logitρ∗ = 2.88), suggesting that for both assays,

the measurement errors for the two assays (σ2
1 and σ2

2) are small relative to the residual

variation (σ2). In addition, the estimate of ∆ suggested that there is a systematic difference

between the initial assay and the second assay. Namely, the mean value for the second assay

was estimated as 0.402 less than the mean value for the initial assay.

Table 1 presents parameter estimates from two simpler models. Similar to the joint

model, the model which incorporates only the initial assay (i.e., single assay) showed a

substantial reduction in viral load from the SIV chronic phase to the ART phase, with a

partially sustained reduction in the release phase. The estimates of β0, β1 and β2 were

nearly identical for this simpler model as compared with the joint model. Interestingly, for

this analysis, there was also little efficiency gain in estimating β0, β1 and β2 by using the

joint model over using the simpler model. Specifically, the standard errors were only slightly

smaller for the joint model as compared with the single assay model. One possible reason for

the lack of an efficiency gain in using the joint model is the difficulty in estimating ρ∗, which

is reflected in the large standard error associated with this estimate. Further, the variability

in estimating ∆, a mean shift between assays, was large. Thus, the results suggest that it
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may be difficult to estimate the association between the two assays when both assays are

never simultaneously observed above their known lower detection limits. This raises the

possibility that the joint model may be substantially more efficient when, on at least some

occasions, both assays are observed above these limits. This will be examined in more detail

in the simulation section.

I examined the fit of the joint model by comparing the quantiles from the actual values

relative to those obtained by simulating data based on the model with estimated model

parameters. Figure 2A shows a Q-Q plot for the single assay fit, while Figure 2B shows a

Q-Q plot for the second assay (only observed in cases where the initial assay was below its

detection limit and there was sufficient plasma sample to perform this assay). The plots

were generated by simulating data according to the model (with model parameters given

by estimates presented in Table 1) with the same data structure (numbers of patients and

follow-up times) as in the vaccinated animal group. The expected quantiles under the as-

sumed model were evaluated by taking the mean value of the empirical distribution across

500 simulated datasets. The Q-Q plot was constructed by plotting the observed empirical

distribution from the actual dataset against the expected quantiles obtained through sim-

ulation. In constructing Figure 2B, in each simulation, I took a random sample of second

assay values corresponding to the number of second assay measurements in the SIV/vaccine

dataset. Figure 2A shows that the model adequately describes the initial assay data in the

vaccine group. Figure 2B shows that the observed quantiles of second assay values are of-

ten larger than the expected quantiles (i.e., observations appear above the 45 degree line).

However, it is important not to over emphasize this Q-Q plot since it is based on only a

relatively small number of second assay values. Further, additional calculations showed that

the number of second assays which were below the lower detection limit was 49 of 66. The

expected number based on a simulation of 5,000 datasets under the estimated model was

54.8 (95% of the number below the lower detection limits ranged between 48 and 60). Thus,

the observed number of second assay measurements which were below detectable limits is
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within sampling error of what would be expected under a correctly specified joint model.

Table 1 presents the results of the approach in which the second assay replaced the initial

assay when it was available (estimates were obtained by maximizing (6) ). Although, the

approach gave qualitatively similar results to the other two approaches, estimates of β1 and

β2 were attenuated as compared with the other two approaches. One has to be careful in

interpreting the results since there are inherent biases with the replacement approach. First,

if there is a systematic difference between the two assays (i.e., ∆ not equal to zero) then,

clearly, the replacement analysis will result in biased estimation. Second, even if there is

no systematic difference between the two assays (i.e., ∆ = 0), the fact that I only replace

the initial measurements with the second assay when the initial assay is below the level of

detection may result in selection bias. I will investigate these biases in more detail with

simulations in the next section.

I found that, in the vaccine group, all methods show a sizable and statistically significant

reduction in viral load while the animal is being treated with ART. Of more interest, is what

happens after ART is terminated. In the vaccinated group, all methods show that there was

substantial reduction in viral load in the follow-up period relative to the SIV chronic phase.

This suggested that the vaccine may have induces changes in viral load that are partially

maintained after ART termination. In order to be assured that this was not just the natural

history of SIV disease in these animals, data from a control group with longitudinal viral

load measurements were obtained. Estimates of β0, β1 and β2 from the joint model fit to

the control data (I = 11) were β̂0 = 5.88 (SE= 0.174), β̂1 = −2.26 (0.100), and β̂2 = −0.006

(0.077). Figure 2C shows a Q-Q plot of the initial assay viral load data in the control group,

which was constructed in a similar way to Figure 2A for the vaccinated group. The figure

illustrates the good fit of the model to the initial assay measurements in the control group.

Since there were very few measurements taken with the second assay in the control group, I

did not assess the goodness of fit for the second assay in this group. Specifically, only 2% of

samples with initial assay measurements below the lower limit of detection were measured
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with the second assay in the control group. Although estimates of β0 and β1 were nearly the

same for the vaccination and control groups, the estimate of β2 was very different between

the two groups. Specifically, this estimate was nearly zero for the control group, suggesting

a near immediate rebound in viral load after ART is terminated in this group. This is in

contrast with the sizable negative estimate of β2 in the vaccination group.

For the control group, I also fit the single assay model (using only the initial assay)

and the replacement model (where I replaced the initial assay by the second more sensitive

assay). Estimates of β0, β1, and β2 (and their standard errors) were nearly identical across

the three methods (data not shown). Primarily, this was due to the fact that there were

very few assays performed with the second assay in the control group.

The data analysis in this section suggested that there may be very little pay-off in measur-

ing a second more expensive assay only when measurements are below the level of detection

on the initial assay. I will examine this further with simulations in the next section.

4 Simulations

I begin by presenting the results from a simulation similar to the example. Specifically, I

simulated data with the same data structure (i.e., same number of observations per patient

and number of patients) as the vaccine group in the example. I did not perform simulations

corresponding to the control group since there were very few second assays performed in this

group. I examine the properties of the joint modeling approach and compare these results

with two simpler approaches under different designs. The estimators are compared under

a design in which the second assay is only performed when the initial assay is below the

level of detection (as in the SIV/vaccine study) and when the second assay is performed

at random without regard to the initial assay values. For computation simplicity, these

simulations were done assuming that there was no between-subject variation (σb = 0) in

the simulation and estimation. The effect of accounting for between-subject variation in the

models will be presented in a simulation later in this section. Table 2 shows the results
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of simulations for estimating β0, β1, β2, ∆, and logitρ∗ for different true values of ∆, ρ∗,

and initial assay variation (σ1). Other parameters were chosen similar to the estimates

obtained for the vaccination group (see Table 1). Further, values of C1 and C2 were chosen

to correspond to the example (C1 = log(20, 000) = 4.8 and C2 = log(4, 000) = 3.6). I

compared the following models/designs: A) the joint modeling approach where the second

assay is performed only when the initial assay is below the level of detection (A1ij ≤ C1),

B) the joint modeling approach where the second assay is performed at random with the

same proportion of second assays as in A, C) the joint modeling approach where both the

initial and second assay are measured at all time points, D) the single assay approach where

only the initial assay is preformed, and E) the replacement approach where the initial assay

measurement is replaced by the second assay measurement when the initial value is below

its lower detection limit. For all simulation scenarios, the second more sensitive assay was

performed in approximately 48% of plasma samples.

The first set of parameters in Table 2 (∆ = 0.40 and logσ∗
1 = −0.50) shows the perfor-

mance of the various approaches when all parameter values are similar to those estimated in

the vaccine group. As in the example, standard deviations of the parameter estimates of β0

and β2 are similar across the different methods and designs. However, there are differences in

estimating β1 across many of the model/designs. A comparison of A versus D shows the ef-

ficiency advantages of incorporating the second more sensitive assay into analysis. Although

there is little efficiency advantage in using the joint model for estimating β0 or β2, there

is a large pay-off in incorporating the second assay for estimating β1. The lack of an effi-

ciency gain for estimating β0 or β2 is due to the fact that there were few initial assays below

detectable limits during the chronic phase or during the release period. For the first set of

parameter values, the simulation results suggest a large pay-off in efficiency for estimating β1

with the relative efficiency of the joint model over the single assay of (0.206/0.132)2 = 2.44

for estimating β1. In general, the efficiency for estimating β with the joint relative to the

single assay model increases as ρ∗ increase, as the ratio of σ∗
1 to σ∗

2 increases, and as the
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detectable limit of the second assay decreases relative to the initial assay.

A comparison of A and B provides a comparison of the design in which the second assay

is only performed when the initial assay is below its lower detection limit and the design in

which the second assay is performed at random without regard to the initial assay values.

For the first set of parameter values, this comparison shows a moderate efficiency gain in

estimating β1 (relative efficiency of 1.10) under the latter type of design. The efficiency is

much larger when the variance parameters are increased. Specifically, when the variances

σ∗
1 and σ∗

2 were increased to exp(0) and exp(−0.3) (third set of parameter values in Table

2), respectively, the relative efficiency for estimating β1 with B versus A was increased

to (0.154/0.119)2=1.67. In addition to the efficiency gain in estimating β1, ∆ and ρ∗ are

estimated more efficiently under scenario B versus scenario A in all reasonable situations.

An alternative design in which the second assay is performed on all initial assays below

detectable limits and performed on a random fraction of initial assays above detectable

limits is evaluated through simulation. The simulation was conducted as in Table 2 with

the third set of parameter values (∆ = 0 and log σ∗
1 = 0). There are large efficiency gains

in performing the second assay on even a small percentage of assays above detectable limits

(data not shown). For example, when the second assay is performed on a random set of

0%, 5%, and 50% of serum samples with initial assays above detectable limits, the standard

errors for β̂1 are 0.154, 0.130, and 0.106, the standard errors for ∆̂ are 0.071, 0.049, and 0.029,

and the standard errors for logitρ̂∗ are 0.98, 0.36, and 0.16, respectively. Thus, there are

sizable efficiency gains in simply performing the second assay on a small fraction of samples

for which the first assay is above detectable limits.

Table 2 shows bias in estimating β0, β1 and β2 using the replacement analysis (E). For

the first parameter configuration (with ∆ = −0.40), there is substantial negative bias in

estimating β1 (-3.0 versus -2.4) and substantial positive bias for estimating β2 (-0.85 versus

-1.00). Even when there is no systematic difference between the two assays (∆ = 0), there is

substantial bias in estimating β1 when σ2
1 is large (third set of parameters in Table 2). This
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bias was substantially reduced when σ2
1 was reduced (second set of parameters in Table 2).

I also conducted a simulation study focusing on estimating a simple linear regression,

Yij = β + 0 + β1tj + εij (Table 3). Specifically, I considered a data structure with I = 100

with plasma samples measured at six equally spaced time points (tj = j, for j = 1, 2, ..., 6).

I assumed that β0 = 5.5, β1 = −0.50, and the lower detection limits for the initial and

second assays are C1 = 4 and C2 = 2, respectively. For different values of logσ∗
1, logσ∗

2,

and ∆, I computed simulation means and standard deviations of key parameters for the

joint modeling approach, replacement approach, and single assay approach for the same

models and designs presented in Table 2. As in Table 2, for computation simplicity, data

were simulated without between-subject variation, and estimation did not account for this

variation. The results show that scenarios A thru D provide nearly unbiased estimates of

β0, β1, ∆ and ρ∗. However, the replacement analysis (E) can be highly biased even in

the situation in which ∆ = 0. In all cases, the parameters β0 and β1 are biased with the

replacement analysis.

A comparison of B with A show the increase in efficiency of performing the second assay at

random rather than only when the initial assay is below the limits of detection. For example,

when logσ∗
1 = 0, logσ∗

2 = −0.5, ∆ = 0, and ρ∗ = 0.95, there is a 54% gain in relative

efficiency ((0.0196/0.0158)2) for estimation β1 by performing the second measurement at

random without regard to the initial assay value as compared with performing the second

assay only when the initial assay is below its lower detection limit. This magnitude is

comparable for other parameter configurations. A comparison of scenario A-C with D shows

that there may be substantial efficiency advantages to incorporating the second assay into

the analysis rather than just using the single initial assay.

Table 4 shows the results of simulations which incorporate between-subject variation.

I fit linear models similar to the model presented in Table 3, but with the addition of a

random intercept term. I present results for σb = 0, 1, and 1.5. The results are similar to

those presented in Table 3, when I did not incorporate between-subject variation. Namely,
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(i) there is efficiency gain in choosing a random set of time points for performing the second

assay as compared with only performing the second assay when the first assay is below its

detection limit (i.e., B is more efficient than A), (ii) there is efficiency gain in jointly modeling

both assays as compared with only modeling the single assay (i.e., A is more efficient than

D), and (iii) simply replacing the initial assay with the second more sensitive assay results

in biased estimation. (i.e., E results in biased estimation).

Inference about β is robust to departures in the measurement error distribution when

Yij is not subject to detection limits. Simulations were conducted to examine the robustness

of the various models and designs to lower detection limits in Yij when the measurement

error distributions are misspecified. Table 5 shows the results of simulations when data

are simulated as in Table 2 with the exception that the measurement errors are generated

as mixtures of normals as opposed to correctly specified normal distributions. I present

simulations with an increasing separation between the two normal distributions, reflecting

increasing departure from normality in the measurement error distributions. The results in

Table 5 suggest that the joint and single assay models are robust to moderate departure

from normality in the measurement error distributions. For large departures such as the

third mixture distribution in Table 5, resulting in a distinct bimodal measurement error

distribution, there was sizable bias for many of the parameters in all of the models and

designs.

5 Discussion

This paper presented an approach for modeling longitudinal biomarker data with multiple

assays, each of which had different known lower detection limits and different measurement

errors. With continuing advances in the development of new biomarkers for assessing disease

outcome, the problem of incorporating different assays into a longitudinal data analysis is an

increasingly important problem. As an example, the motivation for this research comes from

a prospective vaccination study where the outcome is a measure of RNA viral load which can
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be measured by a number of well established assays. Due to cost and/or laborious laboratory

work, it may not be feasible to perform the more sensitive assay for each longitudinal plasma

sample. Performing a “crude” initial assay (with a high lower detection limit), followed by

a more sensitive assay on a fraction of available plasma samples provides a good alternative

to performing the more sensitive assay on all samples.

I proposed a joint modeling approach and, with analysis and simulations, compared the

approach with a simple replacement approach where I replaced the initial assay measurement

with a more sensitive assay measurement when the initial assay value was below its lower

detection limit. I also compared the joint approach to a simpler model which only used the

initial assay measurements for inference. In general, the joint modeling approach had better

statistical properties than the other approaches. Specifically, estimates from the joint model

were unbiased and more efficient than estimates which only incorporated the initial assay.

Further, the replacement analysis could lead to substantial bias when the measurement errors

are moderate or large.

In addition to the comparison of different modeling approaches, the choice of a design

for measuring the second assay was important for efficient estimation. The simulation study

results showed that there can be large efficiency gains in performing the second assay without

regard to the value of the initial assay as compared with performing the second assay only

when the initial assay value is below its lower detection limit. Further, the efficiency of the

design in which the second assay was performed only when the initial assay value is below

detectable limits is greatly improved with only a small fraction of second assays be performed

when the initial assay value is above detectable limits.

The results of simulation studies (Table 5) suggested that the joint and single assay mod-

els are robust to moderate departure from normality of the measurement error distributions.

However, there was sizable bias when this distribution was highly non-normal. It is therefore

important for the practitioner to examine departures from normality in the measurement

error distribution when using these models. The Q-Q plots presented in the SIV/vaccine
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analysis provide a demonstration of this.

All methods discussed in this paper showed a large decrease in viral load during the

ART period with a differential effect on viral load during the release period (follow-up after

vaccine and ART is terminated) between vaccinated and unvaccinated animals. Specifically,

unvaccinated animals showed a quick rebound in viral load, while vaccinated animals showed

a partially sustained reduction in viral load after ART was terminated. These are consistent

with results presented in (von Gegerfelt et al., 2007) which demonstrated the therapeutic

effectiveness of the vaccine by using a more crude analysis in which the initial assay values

were replaced with more sensitive assay values when they were available. Further, in this

analysis, measurements below lower detection limits were replaced by the value of one-half

the detection limit, a strategy which can induce bias relative to a model based approach

(Hughes, 1999).

This paper considers only two assays. In fact, in the SIV/vaccine study there were a

small group of plasma samples which were measured with additional more sensitive assays

(I did not use this added information in the data analysis in this paper). Extensions to

include more than two assays is an area for future research. The joint modeling approach

can be extended to include an excess proportion of assay measurements below lower detection

limits using mixture models (Moulton and Halsey, 1995; Moulton et al., 2002). There was

no evidence of such an excess of low values in the SIV/vaccine study (recall that there was

a lower proportion of second assay measurements that were below detectable limits than

would be expected under the model), but such an extension may be very appropriate in

other applications. Such an extension is the subject of future research. The focus of this

research is on modeling data with lower detection limits since this was of particular concern

in the SIV/vaccine study. The approach could be extended to incorporate upper detection

limits for applications where this is appropriate.

The joint model assumes that the difference between the two assays is a constant (equa-

tion (2)), and therefore a slope of 1 is assumed between the two measurements. Unfortu-
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nately, it is very difficult to estimate a more complex relationship between the two assays

when as in the SIV/vaccine study, second assays are only performed when the initial assay

is below detectable limits. When a sizable proportion of both assay values are above de-

tectable limits, a more flexible relationship between the two measurements that incorporates

an arbitrary slope in a simple linear model or a cubic spline representation is possible. This

is an area for future research.
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Appendix: Bias in the replacement analysis

Asymptotic bias is shown for the replacement analysis in a simple illustrative example.

Consider the simple case in which there is a single measurement on each individual. Denote

A1i and A2i as the initial and second assay values, respectively, with both having mean µ

(∆ = 0). Also, let C1 be the lower detection limit for the initial assay and suppose that there

is no lower limit of detection and no measurement error for the second assay. Also denote εi

as the residual error and δ1i as the measurement error for the first assay, with the variance

of these two quantities being denoted as σ2 and σ2
1, respectively. The two assay values can

be expressed as A1i = µ + δi1 + εi and A2i = µ + εi, respectively. The asymptotic bias was

evaluated by generating a sample of 20,000 individuals and estimating µ by maximizing a

likelihood similar to (6). When µ = 3, C1 = 3, and σ2
1 = 1, the asymptotic bias of µ (µ̂-µ) is

0.54, 0.55, and 0.81, for σ2
1 = 0.1, 0.2, and 1, respectively. In all cases tried. µ was positively

biased in the replacement analysis.
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Figure Legends:

Figure 1: Profiles for the first four patients in the vaccination cohort. 1=initial assay, while

2=second assay, The dotted line shows the lower detection limit for the initial assay, while

the -.-. line shows the lower detection limit for the second assay. The solid line shows the SIV

chronic phase, while the dashed line - - - shows the release period after ART is terminated.

The area without a line shows the viral load during the ART period.

Figure 2: Q-Q plots for (A) initial assay for vaccinated group, (B) second assay for vaccinated

group, (C) initial assay for control group.
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Table 1: Models fit to vaccine treated Macaques (I = 12).

Models Parameter Estimates (SE)

β̂0 β̂1 β̂2 ∆̂ log σ̂b log σ̂∗
1 log σ̂∗

2 logitρ̂∗

Joint 5.56 -2.42 -0.97 -0.40 -0.78 -0.45 -0.27 2.88
(0.15) (0.14) (0.09) (0.09) (0.25) (0.05) (0.12) (0.75)

Single Assay 5.56 -2.44 -0.97 – -0.76 -0.45 – –
(0.15) (0.15) (0.09) – (0.22) (0.05) – –

Replacement 5.56 -2.37 -0.85 – -0.85 -0.51 0.67 –
(0.14) (0.14) (0.09) – (0.22) (0.05) (0.21) –
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Table 2: Simulation: Data simulated according to (3) with β0 = 5.6, β1 = −2.4, β2 =
−1.0, ρ∗ = 0.95, and log σ∗

2 = −0.30 with the same data structure as the vaccine group in
SIV/vaccine study (i.e., I = 12 and number/time of measurements identical to the example).
The models/designs are: (A) Joint model with second assay only observed when the initial
assay is below its lower-limit of detection. (B) Joint model with second assay observed at
random, independent from the results of the initial assay, with the same proportion of second
assay measurements as in A. (C) Joint model with second assay observed at all time points.
(D) Model for single initial assay. (E) Replacement analysis. Simulations are based on 2000
simulated datasets. Standard errors (SE) is the estimated standard deviation in parameter
estimates over the 2000 simulations.

Parameters Design-Model Average (SE)

∆ log σ∗
1 β̂0 β̂1 β̂2 ∆̂ logit ρ̂∗

-0.40 -0.50 A 5.60 -2.41 -1.00 -0.40 3.20
(0.059) (0.132) (0.078) (0.066) (0.96)

B 5.60 -2.41 -1.00 -0.40 2.96
(0.057) (0.126) (0.075) (0.023) (0.18)

C 5.60 -2.41 -1.00 -0.40 2.95
(0.056) (0.112) (0.072) (0.017) (0.14)

D 5.60 -2.42 -1.00 – –
(0.059) (0.206) (0.078) – –

E 5.62 -2.99 -0.85 – –
(0.057) (0.280) (0.078) – –

0 -0.50 A 5.60 -2.40 -1.00 -0.00 3.17
(0.059) (0.113) (0.075) (0.063) (0.84)

B 5.60 -2.40 -1.00 -0.00 2.96
(0.057) (0.110) (0.075) (0.023) (0.17)

C 5.60 -2.40 -1.00 -0.00 2.95
(0.056) (0.095) (0.072) (0.017) (0.13)

D 5.60 -2.42 -1.00 – –
(0.060) (0.200) (0.078) – –

E 5.61 -2.44 -0.88 – –
(0.057) (0.125) (0.081) – –

0 0 A 5.60 -2.40 -1.00 -0.00 3.11
(0.095) (0.154) (0.119) (0.071) (0.98)

B 5.60 -2.40 -1.00 0.00 2.96
(0.086) (0.119) (0.099) (0.031) (0.17)

C 5.60 -2.40 -1.00 0.00 2.96
(0.079) (0.096) (0.081) (0.025) (0.13)

D 5.60 -2.40 -1.00 – –
(0.098) (0.168) (0.130) – –

E 5.40 -2.22 -1.04 – –
(0.202) (0.247) (0.151) – –
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Table 3: Simulation: Comparison of models/designs for estimating a simple linear regression
model. The design has I = 100 subjects and ni = 6 (for all i) equally spaced time points
(tj = j) with Yij = β0 + β1tj + εij , where β0 = 5.5, β1 = −0.50, ρ∗ = 0.95, and the lower
limit of detection for the two assays are C1 = 4 and C2 = 2. The models/designs are: (A)
Joint model with second assay only observed when the initial assay is below its lower-limit
of detection. (B) Joint model with second assay observed at random, independent from the
results of the initial assay, with the same proportion of second assay measurements as in A.
(C) Joint model with second assay observed at all time points. (D) Model for single initial
assay. (E) Replacement analysis. Simulations are based on 2000 simulated datasets.

Parameters Design-Model Average (SE)

∆ log σ∗
1 log σ∗

2 β̂0 β̂1 ∆̂ logit ρ̂∗

0 0 -0.50 A 5.50 -0.500 0.00 3.03
(0.083) (0.020) (0.049) (0.44)

B 5.50 -0.500 0.00 2.95
(0.076) (0.016) (0.030) (0.14)

C 5.50 -0.500 0.00 2.95
(0.070) (0.013) (0.027) (0.11)

D 5.50 -0.500 – –
(0.104) (0.034) – –

E 5.02 -0.429 – –
(0.104) (0.022) – –

-0.40 0 -0.50 A 5.50 -0.500 -0.40 3.03
(0.086) (0.021) (0.050) (0.46)

B 5.50 -0.500 0.00 2.95
(0.075) (0.016) (0.030) (0.14)

C 5.50 -0.500 0.00 2.95
(0.070) (0.013) (0.027) (0.11)

D 5.50 -0.500 – –
(0.104) (0.034) – –

E 4.52 -0.409 – –
(0.103) (0.022) – –

0 -0.50 -1.0 A 5.50 -0.50 0.00 3.05
(0.050) (0.013) (0.035) (1.12)

B 5.50 -0.500 0.00 2.96
(0.047) (0.010) (0.018) (0.14)

C 5.50 -0.500 0.00 2.95
(0.044) (0.008) (0.016) (0.11)

D 5.50 -0.501 – –
(0.069) (0.026) – –

E 5.35 -0.476 – –
(0.067) (0.014) – –

24



Table 4: Simulation: Comparison of models/designs for estimating a linear mixed model of
the form Yij = β0 + β1tj + bi + εij , where σb = var(bi), j = 1, 2, .., 6 ni = 6 (for all i) and
I = 100. Further, β0 = 5.5, β1 = −0.50, ∆ = 0, log σ∗

1 = 0, log σ∗
2 = −0.5, ρ∗ = 0.95, and the

lower limit of detection for the two assays are C1 = 4 and C2 = 2. The models/designs are:
(A) Joint model with second assay only observed when the initial assay is below its lower-
limit of detection. (B) Joint model with second assay observed at random, independent from
the results of the initial assay, with the same proportion of second assay measurements as
in A. (C) Joint model with second assay observed at all time points. (D) Model for single
initial assay. (E) Replacement analysis. Simulations are based on 2000 simulated datasets.

Between-subject variance Design-Model Average (SE)

σb β̂0 β̂1 ∆̂ logit ρ̂∗

0 A 5.50 -0.500 0.00 3.04
(0.083) (0.020) (0.050) (0.46)

B 5.50 -0.499 0.00 2.97
(0.075) (0.016) (0.031) (0.14)

C 5.50 -0.499 0.00 2.95
(0.070) (0.013) (0.028) (0.11)

D 5.50 -0.501 – –
(0.106) (0.035) – –

E 5.02 -0.428 – –
(0.100) (0.021) – –

1 A 5.50 -0.499 0.00 3.13
(0.130) (0.021) (0.059) (0.69)

B 5.50 -0.499 0.00 2.96
(0.124) (0.016) (0.030) (0.17)

C 5.50 -0.499 0.00 2.95
(0.120) (0.013) (0.027) (0.13)

D 5.50 -0.500 – –
(0.149) (0.035) – –

E 5.18 -0.455 – –
(0.177) (0.025) – –

1.5 A 5.50 -0.500 0.00 3.17
(0.172) (0.021) (0.065) (0.81)

B 5.50 -0.500 0.00 2.96
(0.168) (0.017) (0.030) (0.17)

C 5.50 -0.499 0.00 2.95
(0.163) (0.013) (0.026) (0.12)

D 5.50 -0.500 – –
(0.190) (0.035) – –

E 5.29 -0.473 – –
(0.208) (0.024) – –
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Table 5: Simulation to examine the effect of model misspecification of the measurement
error distribution on estimation. Data are simulated with the same data structure in Table
2 with measurement error generated as a two-group mixture of normals as compared with
the normal distribution in Table 2. As in Table 2, β0 = 5.6, β1 = −2.4, β2 = −1.0, and
ρ∗ = 0.95. Further, as in the third set of parameters in Table 2, ∆ = 0, log σ∗

2 = 0 and
log σ2 = −0.30. The models/designs are the same as defined in Table 2. Simulations are
based on 2000 simulated datasets. Standard errors (SE) is the estimated standard deviation
in parameter estimates over the 2000 simulations.

Mixture of normals1 Design-Model Average (SE)

β̂0 β̂1 β̂2 ∆̂ logit ρ̂∗
1
2
N(−1, 0.50) + 1

2
N(1, 0.50) A 5.60 -2.37 -1.01 -0.00 3.05

(0.097) (0.154) (0.118) (0.074) (0.86)
B 5.60 -2.38 -1.00 0.00 2.97

(0.086) (0.116) (0.095) (0.030) (0.17)
C 5.60 -2.38 -1.01 0.00 2.95

(0.079 (0.095) (0.078) (0.025) (0.12)
D 5.59 -2.37 -0.99 – –

(0.101) (0.168) (0.132) – –
E 5.35 -2.13 -1.05 – –

(0.221) (0.265) (0.150) – –
1
2
N(−1.5, 0.31) + 1

2
N(1.5, 0.31) A 5.60 -2.32 -1.04 0.00 3.09

(0.096) (0.147) (0.115) (0.069) (0.59)
B 5.59 -2.34 -1.00 0.00 2.97

(0.088) (0.114) (0.097) (0.033) (0.17)
C 5.60 -2.34 -1.01 0.00 2.95

(0.081) (0.094) (0.079) (0.027) (0.12)
D 5.58 -2.36 -0.99 – –

(0.101) (0.162) (0.132) – –
E 5.26 -1.98 -1.06 – –

(0.219) (0.257) (0.152) – –
1
2
N(−2, 0.20) + 1

2
N(2, 0.20) A 4.28 -3.52 -1.00 -0.38 2.31

(0.074) (0.921) (0.086) (0.074) (1.05)
B 4.28 -3.69 -1.00 0.38 2.11

(0.073) (0.749) (0.081) (0.057) (0.31)
C 4.28 -3.51 -1.00 0.38 2.07

(0.073) (0.83) (0.067) (0.047) (0.22)
D 4.28 -3.64 -1.03 – –

(0.078) (0.503) (0.150) – –
E 4.48 -2.91 -0.81 – –

(0.057) (0.764) (0.068) – –

1 Measurement error for the first and second assay is generated by multiplying the mixture
distribution by σ∗

1 and σ∗
2, respectively.
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