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1 Supplemental Section 1: Notation, proof, and
further discussion

1.1 Notation

The total number of samples available is n. The number of samples in the
training set is t and the number in the validation set is v with n = t + v. The
training set is T = {x1, ..., xt}, the validation set is V = {xt+1, ..., xn=t+v}, and
the entire dataset is S = {x1, ..., xn}.

• Â(T ,S − T ) is the observed conditional accuracy of the split sample clas-
sifier. In other words, the proportion correctly classified by a classifier
developed on the training set T when it is applied to the validation set
S − T . This accuracy is a function of (conditional on) the samples chosen
for S and how S is split into a trainin set, T , and a validation set, S − T .

• A(T ) is the accuracy of the classifier developed on the samples T that
would be observed if it were applied to the entire population of interest.
A(T ) is a function of (conditional on) the samples chosen for T . McLach-
lan (1992) refers to this as the actual accuracy and Efron and Tibshirani
(1997) as the true accuracy.

• Similarly, A(S) is the conditional accuracy of the classifier developed on
the full dataset.

• μA(t) = E [A(T )] is the expected (unconditional) accuracy of classifiers
developed on training sets of size t, where the expectation is taken over
training sets of size t in the population.

• Similarly μA(n) = E [A(S)] is the expected (unconditional) accuracy of
classifiers developed on training sets of size n, where the expectation is
taken over all sets of size n in the population.
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1.2 Decomposition of the mean squared error

Let S represent a sample of size n taken from the population, and Ξ the set of
all such samples in the population. Let A(S) be the true (actual) accuracy of
a classifier developed on a sample set S; A(S) is also called the “conditional
accuracy” because it is conditional on the training set S. Let Â(T ,S − T ) be
the split sample estimate of accuracy, estimated by splitting the sample into
the training set T ⊂ S and the validation set S − T . Then

MSE = E

[(
Â(T ,S − T )−A(S)

)2]

where the expectation is taken first over all S ∈ Ξ and then over all T ∈ S.

The mean squared error is E

[{
Â(T ,S − T )−A(S)

}2]

, where the

expectation is taken over all sets of size n in the population, and then
conditionally over all divisions of each set of size n into a training set of size t
and a validation set of size n− t.

E

[(
Â(T ,S − T )−A(S)

)2]

= E

[(
Â(T ,S − T )−A(T ) +A(T )−A(S)

)2]

= E

[(
Â(T ,S − T )−A(T )

)2]

+ E
[
(A(T )−A(S))2

]

where we have assumed that the cross-term is zero.
Consider the first term. A(T ) is the true predictive accuracy of the classifier
that was developed on the training set. Now technically S is fixed ahead of T ,
so that S − T is not a random sample from the population. But it is
equivalent to a random sample since S is a random sample from the
population and T a random sample from S. Looked at this way, it can be seen
that the first term is an average of accuracy variances from binomial samples
of size n− t. We therefore call this first term the binomial variance term V
and it is approximately equal to:

E

[(
Â(T ,S − T )−A(T )

)2]

= E

[
A(T )(1−A(T ))

n− t

]

≈
μA(t)[1− μA(t)]

n− t
.

Now consider the second term E
[
(A(T )−A(S))2

]
. This is the expected

squared bias due to using a training set of size t < n to estimate the accuracy
of a classifier developed on the full dataset of size n. This squared bias could
be estimated using Monte Carlo in restricted simulation settings where the
exact accuracies A(T ) and A(S) can be calculated mathematically for every
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Monte Carlo simulation. However, in more realistic settings, A(T ) and A(S)
cannot be calculated because the distribution of the populations in unknown.
In order to develop a more general approach, it is useful to instead further
decompose this expected mean squared error as follows:

E
[
(A(T )−A(S))2

]
= E

[
(A(T )− μA(t) + μA(t)− μA(n) + μA(n)−A(S))

2
]

∝ E
[
(A(T )− μA(t))

2
]
+ (μA(t)− μA(n))

2

= A+B

where, in the final line, we have denoted A as the accuracy variance for
samples of size t, and B as the squared bias term. Note that the
proportionality in going from line 1 to line 2 comes from the fact that the
third term in the equation does not involve t.
Now these decompositions above involve assumptions that the cross-terms are
negligible. This assumption can be partially evaluated in the simulation
setting by comparing the MSE patterns as the training size varies, where the
comparison is between the MSE pattern estimated using the decomposition
above to the MSE pattern from brute force Monte Carlo.

1.3 A justification for the rule-of-thumb suggestion

The motivation for this recommendation is easiest to see by considering
situations in which this is a bad idea, because n/2 to training results in much
lower mean squared error (MSE) than 2n/3. Then, by showing that these
situations are unlikely to happen when the full dataset accuracy is over 85%,
the conclusion naturally follows that in situations that are likely to happen,
2n/3 to the training set is a safe and robust strategy.
The mean squared error can be broken down into MSE = V +A+B. We
consider these terms in the order B, V , and A.

B, the squared bias : The squared bias term will never be larger at
t = 2n/3 than it is at t = n/2, except in the unlikely case that the mean
accuracy decreases as the training set sample size increases. This could
only happen with a poorly chosen predictor development algorithm.

V, the binomial variance In all our simulations, this was the key term that
dominated when t approached n. However, the difference between the V
term at n/2 and at 2n/3 term is bounded above by 1

4n . For example, if
n = 100, then the difference is ≤ 0.0025. In order for this term to be
much larger at n/2 than 2n/3, n needs to be fairly small1.

1That being said, in the simulations, when n was small and the performance on the full
dataset was > 60%, the best performing predictor tended to have more samples assigned to
training.
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A, the accuracy variance The accuracy variance stayed relatively flat in all
our simulations. Given the preceding considerations, the most feasible
scenario in which n/2 would result in a much smaller MSE than 2n/3
would be a setting in which the accuracy variance at 2n/3 was much
larger than at n/2. Importantly, accuracy variance that increases
significantly with sample size would be an undesirable property in a
predictor development algorithm. While not inconceivable, this would
contradict what was observed in the simulation datasets and the real
datasets examined. But there could be predictors that behave this way.
This possibility could be explored through simulation or parametric
bootstrap.

In conclusion, our rule-of-thumb advice is to use 2/3rds of the samples for the
training set when the full dataset accuracy is believed to be over 85%. The key
assumptions for this general rule-of-thumb are that 1) the accuracy variance at
t = 2n/3 will not be much larger than at t = n/2. The key assumption (1)
should generally be true, but can also be evaluated to some extent by
simulations using the predictor development algorithm that is to be used in
the proposed study.

2 Supplemental Section 2: Table S1
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n = 200
m = 50 t : v 170:30 70+:130- 40+:160- 20+:180-

Ā(n) (83%) (> 99%) (> 99%) (> 99%)
m = 10 t : v 150:50 150:50 90:110 40+:160-

Ā(n) (62%) (94%) (99%) (> 99%)
m = 1 t : v 10:190 150:50 130:70 90:110

Ā(n) (51%) (68%) (77%) (84%)
2δ/σ = 0.5 2δ/σ = 1.0 2δ/σ = 1.5 2δ/σ = 2.0

n = 100
m = 50 t : v 70:30 80+:20- 40+:60- 20+:80-

Ā(n) (65%) (> 99%) (> 99%) (> 99%)
m = 10 t : v 10:90 80:20 70:30 40+:60-

Ā(n) (53%) (89%) (99%) (> 99%)
m = 1 t : v 10:90 40:60 80:20 70:30

Ā(n) (50%) (60%) (76%) (84%)
2δ/σ = 0.5 2δ/σ = 1.0 2δ/σ = 1.5 2δ/σ = 2.0

n = 50
m = 50 t : v 10:40 40:10 40:10 20+:30-

Ā(n) (56%) (96%) (> 99%) (> 99%)
m = 10 t : v 10:40 40:10 40:10 40:10

Ā(n) (51%) (70%) (97%) (> 99%)
m = 1 t : v 10:40 10:40 20:30 40:10

Ā(n) (50%) (53%) (64%) (80%)
2δ/σ = 0.5 2δ/σ = 1.0 2δ/σ = 1.5 2δ/σ = 2.0

Table S1: Entries show the split of the sample that minimizes the mean
squared error (MSE). Unequal prevalence from each of two classes, namely,
67% from one class and 33% from the other class. Total sample size is n. Table
entries t : v indicate the optimal allocation to the training t and validation v
sets, with n = t+ v. The average accuracy estimate for the sample size of n is
Ā(n). m is the number of differentially expressed genes, each differentially
expressed by a standardized fold change of 2δ/σ. Table notation such as
“50+:150-” indicates that the MSE was flat, achieving a minimum at t=50
and remaining at that minimum for t > 50. Here, “flat” is defined as having a
range of MSE values with |MSEmax −MSEmin| < 0.0001. P = 22, 000 genes
on arrays. Each table entry based on 1, 000 Monte Carlo simulations.
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3 Supplemental Section 3: Figures from the
model-based approach

3.1 Equal prevalence (50% from each class) simulations
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3.2 Unequal class prevalence (67% versus 33%)
simulations
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4 Supplemental Section 4: Comparison of
model-based and bootstrap approach on the
same simulated datasets.
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5 Supplemental Section 5: Empirically
estimated covariance and effects simulations

Figure to correspond to empirical covariance and effects simulation with
p = 0.9 and PCC(n = 240) = 96%.

Figure to correspond to empirical effects and covariance simulation with
p = 0.6 and PCC(n = 240) = 86%.
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6 Supplemental Section 6: Analysis of
microarray datasets

6.1 Golub et al. dataset

Golub estimated MSE based on 1000 bootstraps to estimate the variance
term, and 1000 sample splits to estimate the squared bias term. Isotonic
regression results used for the MSE figure above.
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6.2 Rosenwald et al. data

6.3 Boer et al. data
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6.4 Sun et al. data
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Above: Sun dataset multidimentional scaling plot, colored by sample type
(oligodendroglioma versus glioblastoma).

Above: Sun dataset clustering dendrogram, marked by class, showing 2 strong
clusters.

Above: Sun dataset. Red: Glioblastoma Black: Oligodendroglioma Yellow:
Glioblastomas incorrectly called by three predictors developed on samples of
size n=20. White: Oligodendrogliomas incorrectly called by three predictors
developed on samples of size n=20.
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6.5 van’t Veer et al
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