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                  A frequent objective of molecular oncology studies using gene 
expression microarrays is to identify previously unknown cancer 
subtypes for which gene expression profi les are homogeneous 
within a subtype but different between subtypes ( 1  –  3 ). This class 
discovery objective ( 4 ) can be particularly appealing in cancer 
research where there is often much heterogeneity in patients’ clini-
cal outcomes that cannot be explained with standard clinical/
pathologic features or biologic markers ( 5 ). Discovering new sub-
types of a disease might be of great help in the decision-making 
process related to the choice of existing treatments as well as in the 
development of new target-specifi c therapeutics. 

 To transfer class discovery results from one gene expression 
microarray study to another in order to independently confi rm the 
results and, most important, to assign new patients to subtypes 
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    Background  Gene expression microarray studies for several types of cancer have been reported to identify previously 
unknown subtypes of tumors. For breast cancer, a molecular classification consisting of five subtypes 
based on gene expression microarray data has been proposed. These subtypes have been reported to 
exist across several breast cancer microarray studies, and they have demonstrated some association with 
clinical outcome. A classification rule based on the method of centroids has been proposed for identifying 
the subtypes in new collections of breast cancer samples; the method is based on the similarity of the new 
profiles to the mean expression profile of the previously identified subtypes. 

   Methods  Previously identified centroids of five breast cancer subtypes were used to assign 99 breast cancer sam-
ples, including a subset of 65 estrogen receptor–positive (ER+) samples, to five breast cancer subtypes 
based on microarray data for the samples. The effect of mean centering the genes (i.e., transforming the 
expression of each gene so that its mean expression is equal to 0) on subtype assignment by method of 
centroids was assessed. Further studies of the effect of mean centering and of class prevalence in the test 
set on the accuracy of method of centroids classifications of ER status were carried out using training and 
test sets for which ER status had been independently determined by ligand-binding assay and for which 
the proportion of ER+ and ER− samples were systematically varied. 

   Results  When all 99 samples were considered, mean centering before application of the method of centroids 
appeared to be helpful for correctly assigning samples to subtypes, as evidenced by the expression of 
genes that had previously been used as markers to identify the subtypes. However, when only the 65 ER+ 
samples were considered for classification, many samples appeared to be misclassified, as evidenced by 
an unexpected distribution of ER+ samples among the resultant subtypes. When genes were mean cen-
tered before classification of samples for ER status, the accuracy of the ER subgroup assignments was 
highly dependent on the proportion of ER+ samples in the test set; this effect of subtype prevalence was 
not seen when gene expression data were not mean centered. 

   Conclusions  Simple corrections such as mean centering of genes aimed at microarray platform or batch effect correction 
can have undesirable consequences because patient population effects can easily be confused with these 
assay-related effects. Careful thought should be given to the comparability of the patient populations before 
attempting to force data comparability for purposes of assigning subtypes to independent subjects. 

    J Natl Cancer Inst 2007;99: 1715  –  23   
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with clinical relevance, one needs to develop an effective and reli-
able classifi cation rule. Such rules are seldom provided in class dis-
covery studies because class discovery methods such as clustering 
are suited for exploring the characteristics of a dataset for identifying 
new subtypes but not for deriving classifi cation rules. Another 
challenge in projecting clustering results from one dataset to 
another is the existence of systematic study effects that affect the 
comparability of data across studies. 

 Grouping of breast tumors into subtypes ( 6  –  8 ) derived from 
gene expression microarray class discovery studies has received 
much attention ( 9 , 10 ). Perou et al. ( 7 ) adopted a class discovery 
approach using hierarchical clustering with the aim of discovering 
subtypes of breast cancer distinguished by different gene expres-
sion profi les. The analysis was later refi ned ( 6 , 8 ) by increasing the 
number of patient samples analyzed, redefi ning the subtypes, and 
showing an association of the fi ve identifi ed subtypes with clinical 
outcome. Sotiriou et al. ( 11 ) adopted a similar approach, whereas 
others used a supervised data analysis approach to identify new 
markers and molecular signatures to predict outcome or response 
to treatment ( 12  –  18 ). 

 Sørlie et al. ( 6 ) went beyond the mere discovery of the subtypes 
of breast cancer and defi ned a classifi cation rule for projecting the 
clustering results from the original dataset (training set) to inde-
pendent datasets (test sets). This classifi cation rule, i.e., the method 
of centroids, was based on the similarity between the gene expres-
sion profi le of samples from the test set and the centroids of the 
subtypes, with the centroid of a subtype defi ned as the vector con-
taining the mean expression profi le of all samples assigned to that 

subtype in the training set; the similarity between the new samples 
and centroids was measured by Pearson correlation. Subsequently, 
many investigators have used the method of centroids ( 19  –  26 ) or 
other ad hoc methods ( 27  –  36 ) to identify the fi ve subtypes of 
breast cancer in their gene expression microarray studies. The pos-
sible implications of the putative subtypes for changes in clinical 
practice and the feasibility of performing the microarray assays in 
a robust and reproducible fashion in routine clinical settings have 
been less thoroughly addressed. Recently, concerns have been 
raised about the robustness ( 37 ) and the reproducibility of the 
subtypes ( 38 ) and about the lack of an operational defi nition of 
what constitutes each of them ( 39 ). 

 In this study, we explored the performance, as measured by 
classifi cation accuracy rates, and robustness of the method of cen-
troids, as proposed by Sørlie et al. ( 6 ), for projecting clustering 
results from one microarray dataset to another using real data 
examples and selected simulations. We examined how factors such 
as normalizations applied to microarray datasets and subtype prev-
alence infl uenced the ability to reliably project across datasets. The 
properties of some other classifi cation methods are briefl y described 
for purposes of discussing the generalizability of our results. 

  Methods 
  Subtypes of Breast Cancer and Their Centroids 

 The five subtypes of breast cancer examined in this study and defined 
by Sørlie et al. ( 6 ) are luminal A [based on 28 samples from the data-
set of Sørlie et al. (6), 89% of which were estrogen receptor positive 
(ER+)], luminal B (11 samples, ER+: 82%), ERBB2+ (11 samples, 
ER+: 64%), basal (19 samples, ER+: 22%), and normal breast-like 
(10 samples, ER+: two out of three for which the data on ER status 
were available). Details on how the subtypes were identified by Sørlie 
et al. ( 6 ) in the training set can be found in the original publication. 

 We used the centroids of the fi ve subtypes from the dataset of 
Sørlie et al. ( 6 ) that were obtained by averaging the expression 
levels of the intrinsic genes (genes whose expression varied the 
least in successive samples from the same patient ’ s tumor but 
which showed the most variation among tumors of different 
patients) for the samples assigned to each subtype. As a part of the 
preprocessing and normalization steps that were applied by Sørlie 
et al. ( 6 ), the expression of each gene was transformed, setting the 
mean (and eventually the median) expression for each gene equal 
to zero (genes were mean centered and median centered). In prac-
tice, to mean (or median) center a gene, the mean (or median) 
gene expression of the gene across all the arrays is subtracted from 
the expression of that gene in each array. Mean centering the 
genes was justifi ed ( 6 ) as a necessary step for adjusting for array 
batch differences within the dataset of Sørlie et al. (6), and it was 
also used in one of the test sets ( 40 ) (see Supplementary Information 
for discussion of other justifi cations for mean centering genes and 
for discussion of other types of normalization [available online]).  

  Microarray Data 

 In addition to the centroids of the five subtypes ( 6 ), the examples 
presented in this paper use two previously published two-channel 
microarray gene expression datasets. One is the dataset of 99 
samples from the population-based study of Sotiriou et al. ( 11 ) 

  CONTEXT AND CAVEATS 

  Prior knowledge 

 Microarray data on the expression of multiple genes in a given sam-
ple have been used to classify breast and other cancers into subtypes 
that are associated with different clinical outcomes. A method had 
been proposed (the method of centroids) for assigning new samples 
to these subtypes based on the similarity of their expression profile 
to the mean expression profile of the previously identified subtypes.  

  Study design 

 New samples for which there was prior information on estrogen 
receptor status were assigned to previously identified breast can-
cer subtypes using the method of centroids, and the effect of sub-
type prevalence and systematic differences across datasets on 
assignment was assessed.  

  Contribution 

 This study identified a number of factors that can influence the 
accuracy of assignment of patient samples to previously identified 
cancer subtypes.  

  Implications 

 Careful consideration must be given to the comparability of patient 
populations and datasets in assigning samples to previously iden-
tified subtypes.  

  Limitations 

 A robust classification rule for assigning new samples that are not 
part of the original dataset from which the clusters were derived 
remains elusive.   
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that included 65 samples that were reported to be ER+ according 
to the ligand-binding assay. Three hundred thirty-six out of the 552 
clones included in the intrinsic gene set of Sørlie et al. ( 6 ) were 
present on the microarrays of Sotiriou et al. ( 11 ). The other dataset 
consists of 117 samples from the study by van’t Veer et al. ( 12 ) and 
includes 71 patients that were reported to be ER+ ( 12 ). Details 
on data availability are reported in Supplementary Information 
(available online).  

  Subtype Membership Assignment of Breast Cancer 

Samples 

 The method of centroids, as proposed by Sørlie et al. ( 6 ), was used 
as the classification rule to predict breast cancer subtype member-
ship for samples included in the dataset of Sotiriou et al. ( 11 ). We 
used the centroids defined by Sørlie et al. ( 6 ) and recorded which 
new samples would be considered nonclassifiable ( 6 ) because they 
had Pearson correlation less than .1 with all the centroids. We 
compared the classification results obtained with and without 
mean centering the genes in the dataset of Sotiriou et al. ( 11 ), 
both for the complete 99-sample dataset and for the subset of 65 
ER+ samples. We evaluated whether the clusters found in the 
original dataset were also reliably identified in the new dataset by 
looking at the expression of genes that were previously used as 
markers to identify subtypes, by looking at the proportion of ER+ 
samples classified in each subtype, and by using the in-group pro-
portion measure ( 38 ) (see Supplementary Information, available 
online).  

  Exploration of the Properties of Class Assignments 

Methods Using ER Status Prediction 

 We used the dataset of Sotiriou et al. ( 11 ) and the method of 
centroids to predict ER status and evaluate the effect of various 
factors on subtype assignments. These factors included the nor-
malization step (i.e., mean centering the genes in training set and/
or in the test set), the proportion of samples of each subtype in 
training and test datasets, the presence of systematic differences 
across datasets, and the use of an arbitrary cutoff point for the 
magnitude of the correlation for the purpose of identifying 
nonclassifiable samples. 

 ER status was known for all samples, assuming no measurement 
error. Therefore, we skipped the clustering step of class discovery 
on the training set and we were able to use the “true” ER status to 
identify the samples that were correctly classifi ed in the test set. 

  Assessment of the Effect of Subtype Prevalence.       To explore 
the effect of subtype prevalence in the test set on the accuracy of 
ER status assignment, we used the 99 samples from the dataset of 
Sotiriou et al. ( 11 ) with expression measurements for 751 clones 
obtained after elimination of genes showing minimal variation as 
previously described ( 11 ). We obtained a training set by ran-
domly selecting a subset of 10 ER+ and 10 ER −  samples from the 
ER+ and ER −  subsets and derived the centroids. We kept 
the proportion of ER+ samples in the training set fi xed because 
the proportion of samples from each class in the training set does 
not systematically affect the classifi cation rule when using the 
method of centroids with Pearson correlation, regardless of 
whether the genes are mean centered. 

 Five test sets obtained from the collection of samples not in the 
training set were as follows: 1) all the samples not included in the 
training set (55 ER+ and 24 ER − ); 2) the same number of ER+ and 
ER −  samples (24 ER+ randomly selected from the 55 ER+ samples 
and 24 ER −  samples); 3) 12 ER+ and 24 ER −  samples randomly 
selected from the 55 ER+ samples and 24 ER −  samples; 4) all the 
ER+ samples not included in the training set (55 ER+); 5) all the 
ER −  samples not included in the training set (24 ER − ). For each 
test set, the method of centroids was applied to predict ER status 
of the samples in the test set after centering or not centering the 
genes in the training and test sets. (See Supplementary Information 
for more details [available online].)  

  Exploration of the Effect of Systematic Differences Across 

Datasets Using Real and Simulated Data.       We evaluated the 
effects of systematic assay-related differences between training and 
test sets with two different approaches. In the fi rst approach, we 
used real data from Sotiriou et al. ( 11 ) and van’t Veer et al. ( 12 ) to 
predict ER class membership for the van’t Veer et al. ( 12 ) samples 
using the data of Sotiriou et al. ( 11 ) as a training set, both with and 
without mean centering genes in both datasets (see Supplementary 
Information for the details on which genes were used [available 
online]). We also conducted simulations in which we artifi cially 
introduced systematic study effects. (See Supplementary Information 
for details [available online].)    

  Statistical Analyses 
 To evaluate the accuracy of the method of centroids for predicting 
ER status under the various situations considered, a class-specific 
accuracy estimate for a given class was computed as the number of 
samples in the class that were correctly classified as belonging to it 
divided by the true number of samples in that class. 

 All survival curves presented were estimated using the Kaplan –
 Meier method as implemented in the freely available statistical 
software package R ( 41 ). Relapse-free survival for the patients 
included in the dataset of Sotiriou et al. ( 11 ) was obtained from the 
original publication and was defi ned as the interval elapsed 
between the date of breast surgery and the date of diagnosis of 
recurrent or second primary breast cancer ( 11 ). 

 The 95% confi dence interval (CI) estimates for survival pro-
portion at specifi c time points were calculated using the survfi t() 
function of the survival library of R and were based on the log 
survival. Ninety-fi ve percent confi dence intervals for hazard ratio 
(HR) were calculated as in Simon ( 42 ), and the standard error was 
estimated using the survdiff() function of the survival library of 
R. To compare gene expression microarray – based measurements 
of estrogen receptor (ESR1) between identifi ed subtypes, a log 2 -
transformed ratio of the expression of the gene in each sample 
relative to common reference was calculated, and the means of 
these log 2 -transformed ratios were compared between subtypes 
using a two-sided  t  test with unequal variances (Welch test). 
Ninety-fi ve percent confi dence intervals for the ratio of the 
geometric means of the expression ratios between the two 
groups were calculated by forming a confi dence interval for the 
difference in the mean log 2 -transformed expression ratios and 
back-transforming to the original scale.  
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 Table 1 .     Subtype prediction of samples from the dataset of Sotiriou et al. ( 11 ) *   

  With mean centering of genes    †  Without mean centering of genes  †    

 Class Predicted ( � <.1)  ‡  ER+

Mean correlation 

(min – max) Predicted ( � <.1) ER+

Mean correlation 

(min – max)  

  Luminal A 43 (5) 41 .22 (.07 – .42) 59 (1) 55 .24 (.09 – .40) 
 Luminal B 13 (2) 11 .17 (.04 – .29) 1 (1) 1 .11 (.11 – .11) 
 ERBB2+ 13 (2) 6 .26 (.01 – .41) 10 (0) 2 .13 (.04 – .21) 
 Basal 21 (0) 0 .40 (.14 – .54) 5 (0) 0 .19 (.14 – .28) 
 Normal 9 (0) 7 .25 (.11 – .46) 24 (2) 7 .21 (.05 – .42)  

  *   The prediction method is based on the method of centroids in which the centroids were defined using the data and intrinsic gene set of Sørlie et al. (6) 
(training set). Predicted = number of samples from the test set that were classified in the subtype; ER = estrogen receptor; ER+ = ER− positive status. 
Correlation = centered Pearson correlation.  

   †    In the test set [data of Sotiriou et al. ( 11 )].  

   ‡    In parentheses, the number of samples for which the Pearson correlation ( � ) with the centroid of the predicted class was less than .1.   

   Fig. 1  .    Subtype prediction of data from the 
dataset of Sotiriou et al. ( 11 ) using method 
of centroids and gene expression of some 
genes representative of the subtypes. The 
dendrogram displays the results of hierar-
chical clustering of the complete dataset 
of Sotiriou et al. ( 11 ) (genes were median 
centered for the purpose of this clustering 
display). The distance metric used in the 
hierarchical clustering was one minus 
centered Pearson correlation, and linkage 
method was average linkage. The  colored 

bars  below the dendrogram represent the 
predicted subtype results obtained apply-
ing method of centroids mean centering 
the genes (Centered) and without mean 
centering the genes (Noncentered) in the 
Sotiriou et al. (11) dataset; the full dataset 
and a dataset restricted to estrogen recep-
tor–positive (ER+) cases only were consid-
ered. The colors used to represent the 
subtypes are  dark blue  for luminal A,  light 

blue  for luminal B,  pink  for ERBB2+,  red  
for basal and  green  for normal subtype. 
The expression of the genes was color 
coded using colors ranging from  green  
(for low relative expression) to  red  (high 
relative expression). The fi rst three genes 
shown in the  bottom panel  should be 
more expressed in the subtype that they 
represent (ERBB2 for ERBB2+ subtype, 
ESR1 for luminal A subtype, KRT5 for 
basal subtype). The set of proliferation 
genes (MYBL2, BUB1, TOP2A, and CENPF) 
should be highly expressed in basal and 
luminal B subtypes but not in the normal 
subtype. The gene expression of all the 
genes included in the intrinsic gene set is 
reported in Supplementary Fig. S1 (available 
online).    

  Results 
  Subtype Membership Assignment on Sotiriou et al. 

Dataset 

 The method of centroids was used to assign breast cancer subtypes 
to the 99 samples represented in the microarray dataset of Sotiriou 
et al. ( 11 ), both with and without mean centering the genes 
(   Table 1 , centered and noncentered analyses). The subtype assign-
ments were strongly influenced by mean centering the genes; more 

than one-third of the samples were assigned to a different subtype 
when comparing centered and  noncentered analyses ( Fig. 1   ; 
Supplementary Table S1, available online).         

 When genes were not mean centered, luminal B (colored light 
blue in Fig. 1) and basal (red) subtypes were scarce, and about a 
quarter of the samples were classifi ed in the normal breast-like 
subtype (green). Mean centering the genes caused samples to 
be reallocated, mostly from luminal A (dark blue) to luminal B 
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subtypes and from normal breast-like subtype to basal and ERBB2 
(pink) subtypes. 

 Although the true distribution of the samples from the test set 
according to the fi ve previously identifi ed subtypes is unknown, 
the results obtained with the centered analysis appeared more 
consistent with the subtype characteristics described by Sørlie et al. 
( 6 ) than did results obtained without mean centering the genes. 
For instance, based on the results of Sørlie et al. (6), we would 
expect that most of the ER −  samples would be classifi ed in the 
basal subtype instead of the normal and we would expect some of 
the ER+ samples to be classifi ed in the luminal B subtype. The 
results obtained with the centered analysis on the complete dataset 
were also more consistent with the patterns of gene expression that 
distinguish the subtypes as they were described by Sørlie et al. (6), 
and this conclusion was supported by visual inspection of the hier-
archical clustering of the samples as depicted in the dendrogram in 
 Fig. 1  together with their predicted subtypes and gene expression 
of a selected subset of genes (Supplementary Fig. S1 shows the 
expression of the complete intrinsic gene set, available online). 
The fi rst three genes in  Fig. 1  should be more expressed in the 
subtype that they represent (c-erb B2/neu [ERBB2] for ERBB2+ 
subtype, ESR1 for luminal A subtype, cytokeratin 5 [KRT5] for 
basal subtype). These genes are conventionally used as markers to 
subclassify luminal, ERBB2+, and basal subtypes by immunohisto-
chemical staining ( 10 , 43 ). The set of proliferation genes (MYBL2, 
BUB1, TOP2A, and CENPF) should be highly expressed in basal 
and luminal B subtypes but not in the normal subtype ( 44 , 45 ). 

 The gene expression of most of the samples that were reallo-
cated from normal to basal subtype by the centered analysis was 
consistent with the known characteristics of basal samples: they 
had low expression of ESR1 and high expression of basal cytokera-
tin KRT5 and of other genes assigned to the basal cluster of Sørlie 
et al. (6). Unlike the normal samples, they had high expression of 
proliferation genes. In addition, the samples reallocated from 
luminal A to luminal B subtype showed characteristics that were 
consistent with the defi nition of the luminal B subtype, i.e., on 
average they had moderate expression of ESR1 and high expres-
sion of proliferation genes. 

 Next, we restricted our attention to the subset of 65 ER+ sam-
ples from the dataset of Sotiriou et al. ( 11 ). Subtype assignment of 
new samples is independent of the characteristics of the other 

samples in the test set if genes in the test set are not mean centered; 
therefore, classifi cation results for noncentered data were the same 
as those discussed for the complete data. The classifi cation did not 
seem to be reliable on this subset of samples when genes were 
mean centered. Although the luminal A subtype was somewhat 
more abundant than the other assigned subtypes, samples were 
roughly uniformly distributed across all the subtypes ( Table 2   ; 
Supplementary Table S2, available online), contrary to the expec-
tation based on the results of Sørlie et al. (6) that most of the ER+ 
samples would be assigned to luminal A or luminal B subtype. 
About half of the samples were assigned to nonluminal subtypes, 
which should contain the majority of ER −  samples ( Fig. 1 ; 
Supplementary Fig. S1, available online). The ER+ samples 
assigned to the basal subtype had on average a lower expression of 
ESR1, but at the same time their expression of KRT5 and of other 
genes from the basal cluster was not high, as should be expected 
for basal samples (Supplementary Fig. S1, available online). 
Therefore, even though the in-group proportion measure indi-
cated support for the existence of all the subtypes ( P <.10 for all 
subtypes; Supplementary Table S3, available online), mean center-
ing the genes did not seem to provide a reliable classifi cation when 
only ER+ samples were considered. The explanation for the fact 
that many of the samples were classifi ed to a different subtype 
than the one assigned in the complete data analysis (28 out of 65) 
is that gene centering disrupts the correlations between the pro-
fi les in the test set and the training set centroids, and these corre-
lations are the basis for the predictions. Moreover, the way in 
which the profi les in the test set are modifi ed depends on the class 
distribution in the test set.      

  Effect of Subtype Prevalence in Test Sets 

 To explore further the properties of the method of centroids, we 
switched from breast cancer subtype projection to the simpler 
problem of predicting known ER status. As previously reported 
( 40 ), it was possible to predict ER status with high predictive accu-
racy also on the dataset of Sotiriou et al. ( 11 ). 

 We considered fi ve test sets that included different proportions 
of ER+ samples ( Table 3   ) using the data of Sotiriou et al. ( 11 ). 
When genes were mean centered both in the training and the test 
set ( Table 3;  Supplementary Fig. S2, available online), there was 
a strong dependence of both overall predictive accuracy and 

 Table 2 .     Subtype prediction of samples from the dataset of Sotiriou et al. ( 11 ) limited to samples with ER+ *   

  With mean centering of genes  †  Without mean centering of genes  †   

 Class Predicted ( � <.1)  ‡  

Mean correlation 

(min – max) Predicted ( � <.1)

Mean correlation 

(min – max)  

  Luminal A 19 (6) .18 (.05 – .34) 55 (1) .25 (.09 – .40) 
 Luminal B 13 (3) .18 (.04 – .29) 1 (0) .11 (.11 – .11) 
 ERBB2+ 11 (1) .21 (.10 – .34) 2 (0) .11 (.10 – .12) 
 Basal 11 (5) .12 (.00 – .27) 0 (0) ND 
 Normal 11 (1) .23 (.07 – .45) 7 (0) .21 (.10 – .42)  

  *   The prediction method is based on the method of centroids in which the centroids were defined using the data and intrinsic gene set of Sørlie et al. (6) 
(training set). Predicted = number of samples from the test set that were classified in the subtype; ER+ = estrogen receptor positive status; ND = nondefinable 
estimate.  

   †    In the test set [samples of Sotiriou et al. ( 11 ) with ER+].  

   ‡    In parentheses, the number of samples for which the Pearson correlation ( � ) with the centroid of the predicted class was less than .1   
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class-specifi c predictive accuracy on the proportion of ER+ sam-
ples in the test set. This was not the case when genes were not 
mean centered (noncentered analysis,  Table 3;  Supplementary Fig. 
S2, available online).     

 The predictive accuracy of the noncentered analysis was consis-
tently better or equivalent to that obtained with the centered anal-
ysis. The drop in the predictive accuracy in the centered analysis 
was particularly striking when the test set included only ER+ sam-
ples (47% of samples misclassifi ed) or only ER −  samples (38% of 

samples misclassifi ed). The same samples were classifi ed with high 
predictive accuracy when included in the test set with 55 ER+/24 
ER −  samples, where overall less than 20% of the samples were 
misclassifi ed ( Table 3 ; Supplementary Fig. S2, available online). 

 Misclassifi cation of the subtypes could have important implica-
tions for clinical interpretation. When considering the test set that 
included only ER+ samples (test set 4), we observed a statistically 
signifi cant difference in the relapse-free survival curves between 
the predicted ER+ and predicted (and misclassifi ed) ER −  samples 
(log-rank test  P  = .045, HR = 2.62 [ER − /ER+], 95% CI = 1.02 to 6.59), 
and therefore the ER+ patients that were correctly classifi ed had 
better survival than the full set of ER+ patients. However, the 
patients whose samples were incorrectly classifi ed as ER −  had a 
statistically signifi cantly better survival than true ER −  patients ( P  = 
.044, HR = 2.08 [ER − /ER+], 95% CI = 1.02 to 4.37, see  Fig. 2   ). 
The two predicted classes had statistically signifi cantly different 
mean levels of ER as measured by microarray (mean log 2  ESR1 
values 2.26 for predicted ER+ and 1.46 for predicted ER − , 95% CI 
for the ratio of the geometric means of the expression ratios [ER+/
ER − ] = 1.22 to 2.51,  P  = .003).     

 In the centered analysis, the overall predictive accuracy 
decreased as the proportion of ER+ samples deviated from 50% in 
the test set and the class-specifi c predictive accuracy decreased as 
the proportion of samples in that class in the test set increased (see 
 Table 3  for some examples). This result is not surprising because 
it can be demonstrated analytically (not shown) that the probability 
of assigning a sample to a class decreases as the proportion of sam-
ples from the test set in that class increases when using the method 
of centroids and mean centering the genes. Furthermore, the 
problems we observed in the centered analysis are not overcome 
when the prevalence of the subtypes in the training set is matched 
with the unknown prevalences in the test set but depend only on 
the prevalence of the subtypes in the test set. 

 We also performed a set of simulations based on multiple resa-
mplings of the dataset of Sotiriou et al. ( 11 ) to assess whether the 
results that were observed using the fi ve different test sets were 
independent of the specifi c choices of the training and test sets. 
Simulation results confi rmed that when genes were mean centered 
there was strong dependence of the predictive accuracy on the 

 Table 3 .     ER class prediction results for five test sets with different prevalence of ER+ samples *   

With mean centering of genes  ‡  Without mean centering of genes  ‡   

  Test set  †  
Predicted ER+ 

(correct/

incorrect) § 

Predicted ER −  

(correct/

incorrect)

Predictive 

accuracy §  

ER+/ER − 

Predicted ER+ 

(correct/

incorrect)

Predicted ER −  

(correct/

incorrect)

Predictive 

accuracy 

ER+/ER −    True ER+ True ER − 

  55 24 46 (43/3) 33 (21/12) 78%/88% 57 (52/5) 22 (19/3) 95%/79% 
 24 24 25 (21/4) 23 (20/3) 88%/83% 27 (22/5) 21 (19/2) 92%/79% 
 12 24 16 (11/5) 20 (19/1) 92%/79% 16 (11/5) 20 (19/1) 92%/79% 
 55 0 29 (29/0) 26 (0/26) 53%/ND 52 (52/0) 3 (0/3) 95%/ND 
 0 24 9 (0/9) 15 (15/0) ND/62% 5 (0/5) 19 (19/0) ND/79%  

  *   The prediction method is based on the method of centroids in which the centroids were defined using the data of the most variable genes of Sotiriou et al. ( 11 ). 
ER = estrogen receptor; ER+ = ER− positive status; ER −  = ER− negative status; ND = nondefinable estimate.  

   †    The training set was the same for all the examples and was selected randomly sampling 10 ER+ and 10 ER −  samples from the dataset of Sotiriou et al. ( 11 ).  

   ‡    In both the training and the test sets.  

  §   Predicted ER+ is the number of samples from test set that were classified in the ER+ class; correct/incorrect indicates the number of correctly and incorrectly 
classified samples.   

  
 Fig. 2  .    Kaplan – Meier estimates of disease-free survival curves of true 
and predicted estrogen receptor – positive (ER+) and ER− samples from 
the dataset of Sotiriou et al. ( 11 ).  Gray lines : disease-free survival 
curves estimated with the method of Kaplan – Meier for ER+ ( solid line ) 
and ER− ( dashed line ) patients included in the dataset of Sotiriou et al. 
( 11 ).  Black lines : estimated disease-free survival curves for a test set 
that included 55 ER+ samples from the dataset of Sotiriou et al. ( 11 ), 
separately reported for the groups of predicted ER+ ( solid line ) and 
predicted ER− ( dashed line ) samples, together with the 95% confi dence 
intervals estimated at three different time points. Predictions were 
obtained with the method of centroids, mean centering the genes in 
both training and test sets. The training set was based on 10 ER+/10 ER− 
samples. The number of patients at risk in the two predicted groups is 
reported at the bottom of the fi gure.    
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proportion of ER+ samples included in the test set (Supplementary 
Fig. S3, available online). In terms of overall predictive accuracy, 
centered and noncentered analyses gave comparable results when 
the proportion of ER+ samples in the test set was between 30% 
and 70% (see Supplementary Fig. S3, available online). When the 
proportion of ER+ and ER −  samples was more unbalanced, the 
class-specifi c predictive accuracy of the less represented subtype 
was greatly reduced by mean centering the genes. The Supple-
mentary Information (available online) reports a more thorough 
presentation of the simulation results, with additional details about 
the effect of mean centering on the correlations and on the 
 proportion of nonclassifi able samples.  

  Effect of Systematic Differences Across Datasets 

 To evaluate the effects of potential systematic differences across 
datasets, we predicted ER class membership for samples from the 
dataset of van’t Veer et al. ( 12 ) using the data of Sotiriou et al. ( 11 ) 
as a training set. Overall predictive accuracy (91%) was the same 
whether genes were mean centered or not, although there were 
some minor differences in class-specific predictive accuracies. 
However, the low correlations observed with the noncentered 
analysis (always less than .16;  Table 4   ) suggested that when genes 
were not mean centered, it was not possible to project ER status 
membership from the dataset of Sotiriou et al. ( 11 ) to that of van’t 
Veer et al. ( 12 ) for most of the samples (i.e., 91% of the samples had 
Pearson correlation less than .1 with all the centroids and would 
have been considered nonclassifiable;  Table 4 ). This result was 
confirmed using simulated data (Supplementary Information, avail-
able online) in which systematic effects were artificially introduced 
into the data and was in contrast to what was observed in the previ-
ous examples, where centering the genes reduced the correlations 
when training and test sets came from the same dataset. However, 
in both centered and noncentered analyses, designating samples as 
nonclassifiable on the basis of low correlation did not prove to be a 
reliable method of identifying incorrectly classified samples 
(Supplementary Information, available online).       

  Discussion 
 Gene expression microarray experiments and class discovery meth-
ods have been used to identify previously unknown subtypes of dis-
eases. We focused on the molecular classification of breast cancer 

into subtypes ( 6  –  8 ) and addressed some recently raised concerns 
about the subtypes ( 37  –  39 ) through analysis of several real datasets 
and through resampling-based simulations. 

 We showed that many diffi culties remain in validating and 
extending class discovery results to new samples and that projec-
tion of clusters from one dataset to another must be done with 
care. Centering of genes, proportion of samples from each of the 
subtypes present in the test set, and systematic study effects were 
identifi ed as factors that play a role in how accurately subtypes that 
had been discovered in a previous dataset can be identifi ed in an 
independent dataset. We found that the appropriateness of gene 
centering depends on the particular situation. If there is a clear 
additive and strong study effect but the two datasets arise from 
roughly similar populations, then centering may be helpful, even 
though we showed that matching the prevalence in the training 
and test set itself does not guarantee good performance of the clas-
sifi er. If there are substantial study effects and differences in sub-
type prevalence, centering will not solve the problems posed by 
differences in training and test sets, so we recommend that careful 
consideration should be given to the comparability of patient pop-
ulations. Unfortunately, in practice, patient population effect can 
easily be confused with microarray platform or batch effects. Most 
of the problems that we identifi ed in our study that prevent projec-
tion of clusters from one dataset to another persisted when projec-
tion methods other than the method of centroids were used (see 
Supplementary Discussion section for more detailed discussion of 
this fi nding [available online]). 

 Other studies have attempted to reproduce subtypes in a new 
dataset without using a method of centroids-type projection but 
simply by clustering the new data using the set of genes defi ned 
in a previous dataset and assuming a similar number of clusters 
( 27 , 28 , 30  –  32 ). This type of class assignment does not suffer from 
exactly the same problems that we pointed out for the method of 
centroids, but it still has many limitations. It is always possible to fi nd 
a given number of subtypes in a new dataset using clustering tech-
niques. However, clusters are not automatically associated to the sub-
types and it can be problematic to assess if the subtypes found in new 
data correspond to those that were previously observed in a different 
dataset. These kinds of studies generally do not provide additional 
insight on how to classify new samples because it is still unclear how 
to classify a sample that is not part of the dataset that has been clus-
tered. A robust classifi cation rule for new samples remains elusive. 

 Table 4 .     ER class prediction results for the samples from the dataset of van’t Veer et al. ( 12 ) (test set) based on a predictor developed 
using data from the dataset of Sotiriou et al. ( 11 ) (training set) *   

  With mean centering of genes  †  Without mean centering of genes  †   

 Class True ER+  ‡  True ER − 

Mean correlation 

(min – max) True ER+ True ER − 

Mean correlation 

(min – max)  

  Predicted ER+ §  ( � <.1)  ||  67 (4) 7 (4) .42 (.03 – .62) 63 (53) 3 (3) .02 ( − .24 – .13) 
 Predicted ER −  ( � <.1) 4 (2) 39 (1) .26 (.01 – .55) 8 (7) 43 (43)  − .03 ( − .23 – .16)  

  *   The prediction method is based on the method of centroids in which the centroids were defined using the data of the most variable genes of Sotiriou et al. ( 11 ). 
ER = estrogen receptor; ER+ = ER− positive status; ER− = ER− negative status.  

   †    In both the training and the test sets.  

   ‡    True ER+ is the number of samples that belong to the ER+ class in the test set.  

  §   Predicted ER+ is the number of samples from test set that were classified in the ER+ class.  

   ||    In parentheses, the number of samples for which the Pearson correlation ( � ) with the centroid of the predicted class was less than .1.   
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 Some of the studies that claimed to have “validated” the 
breast cancer subtypes have focused on comparing the clinical 
outcome differences between subtypes assigned in an indepen-
dent cohort with the differences previously reported for the sub-
types ( 8 , 26 , 30 ). Although this approach can provide supporting 
evidence for an association between the gene expression profi les 
and clinical outcome, it does not provide a direct measure of the 
robustness of the specifi c clinical classifi cation at an individual 
level, which is essential before assigning patients to subtypes in 
clinical practice for purposes of risk stratifi cation or therapy 
selection ( 26 , 30 ). As we showed with the example of the two 
groups predicted as ER+ and ER −  within the group of ER+ sam-
ples, even though a statistically signifi cant difference in survival 
was observed between the two predicted groups, many patients 
were misclassifi ed. If these incorrect groups had been used to 
determine which patients received endocrine therapy, it is possi-
ble that patients with moderate to weak ER expression (who were 
misclassifi ed as ER − ) could have been denied endocrine therapy 
from which they might have received clinical benefi t. This situa-
tion might share some similarities with what has been observed 
for luminal A and luminal B  subtypes of breast cancer ( 6 ), with 
patients with luminal B breast cancer having worse prognosis 
than patients with the luminal A subtype. Even though most 
luminal B samples are ER+, this subtype is characterized by 
lower expression of ER compared with the luminal A subtype ( 6 ). 
It is possible that the luminal A and luminal B subtypes lie on a 
biological continuum and that no clear delineation of the two 
groups really exists. 

 A clinically useful classifi er for breast cancer subtypes must sat-
isfy a number of conditions. It must unambiguously classify a new 
sample into a specifi c subtype independently of any other samples 
being considered for classifi cation at the same time. The clinical 
meaning of the subtype assignment (e.g., survival probability or 
probability of response to a particular drug) must be stable across 
populations to which the classifi er might be applied. The technol-
ogy platform(s) that produce(s) the profi les must be stable enough 
so that when the same sample is assayed on different occasions it 
will with very high likelihood be classifi ed to the same subtype. We 
have demonstrated in this paper that the currently claimed breast 
cancer subtypes fall substantially short of meeting all of these 
requirements. 

 Our study had some limitations. We focused solely on breast 
cancer gene expression microarray datasets, and we considered a 
limited number of cluster projection methods. It is possible that 
the strong effect of ER status on gene expression profi les and its 
major role in defi ning the putative breast cancer subtypes pro-
duced a particularly dramatic effect when ER distribution was per-
turbed and gene centering was used. However, given the wide 
attention that the breast cancer subtypes have received, we feel that 
the breast cancer examples are highly relevant. Although we did 
not provide a comprehensive evaluation of the performance of a 
large number of cluster projection methods, the fundamental 
diffi culty in disentangling assay-related study effects from true 
biological difference in populations leads us to believe that identi-
fi cation of a universally robust cluster projection method with the 
ability to cross microarray platforms will be diffi cult. More repro-
ducible approaches to profi ling through the standardization of 

microarray methods or other technologies such as reverse tran-
scription – polymerase chain reaction or immunohistochemistry 
will likely be helpful in achieving the necessary robustness of 
results to transform these promising fi ndings to clinically useful 
tools.  
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