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Supplementary Appendix

Survival Outcomes

Let S+T denote the random variable representing the survival of a biomarker positive patient on T and let S+C denote the survival on control. Assume that the survival distributions of the random variables are proportional hazards alternatives. The derivation below assumes that the potential survival times are independent and have marginal proportional hazards. The derivation utilizes two results : First that the probability density function of a survival random variable equals the hazard function times the survival function; Second that if one random variable has a hazard function that is ( times that of another random variable, then the survival function of the first random variable equals the survival function of the second random variable raised to the power (. 
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The final step results because the integrand is the hazard function of a random variable times the survival function of the same random variable. The integrand is thus the probability density function of a random variable whose hazard is (++1 times that of S+T and must therefore integrate to 1. 

Proving formula (2) for npv follows easily from the above.





[image: image2.wmf] 

Confidence Intervals

Approximate confidence intervals for the four performance measures can be computed in the following way. The estimated treatment log hazard ratios for the two biomarker groups are approximately normally distributed. The variances of these normal distributions are 4/d+ and 4/d- for the marker positive and negative groups where d+ and d- are the number of events in the two groups respectively. If the number of events are not reported, the variances can often be estimated from the reported 95% confidence intervals for the hazard ratios. If the hazard ratios are estimated separately for the marker positive and marker negative strata, the joint distribution of the estimated treatment log hazards will be independent. Approximate parametric bootstrap confidence intervals can be obtained by sampling values of 
[image: image3.wmf]and 
[image: image4.wmf]using the estimated log hazard ratios from the data as the true means of the normal distributions. Those samples can be converted (by exponentiating) to sampled hazard ratios and plugged into (1) and (2). The resulting values of ppvi and npvi can then be plugged into (3) and (4), if the prevalence of the biomarker is known, to give values of inferred sensitivity and specificity. If the prevalence is not known with great precision then in addition to plugging values of ppvi and npvi into (3) and (4), one also plugs in a value of prevalence sampled from its sampling distribution. If there are n+ and n- marker positive and negative patients respectively, the estimated prevalence for the study is n+/(n++n-). A new value 
[image: image5.wmf] can be sampled from a binomial distribution with parameters n+/(n++n-) and (n++n-) . The value 
[image: image6.wmf] is plugged into (3) and (4) with the sampled values of ppvi and npvi to obtain sampled values of inferred sensitivity and specificity.  This sampling is repeated 1000 times or more and the central 95%tile selected as the confidence interval for each performance measure. 

Independence Conditional on Covariates

With conditional independence we assume that the conditional distributions of the potential survival times given the clinical covariates are independent. The marginal distributions of the potential survival times for say the marker positive group is ((t) exp{b'x + cz} where x is a vector of covariates and z is the binary treatment indicator. Under these assumptions the derivation of (1) of the Appendix can be used to show that 
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for all covariate vectors x, where 
[image: image8.wmf] We still define 
[image: image9.wmf] and note that  
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as before where we have integrated over the conditional distribution of the covariate vector for marker positive patients. 

If you include a frailty term "u" to the model, the assumptions are that ST and SC are independent and have marginal hazards ((t) exp{u+b'x } and ((t) exp{u +b'x+c} conditional on “u” where “u” has a Gaussian population distribution. The derivation leading to (A1) can be used to show that analogous to (A2)
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and consequently
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Hence the result (A3) continues to apply where the integration is over both the distribution of the covariate vector x and the frailty u.  In this case 
[image: image13.wmf]where c is estimated from the model containing the covariates and frailty. 

Binary Outcomes

If the endpoint is response rate or complete response rate rather than survival, then the ppvi is the probability that a marker positive patient would respond to T but not to C. Assuming independence, that probability is 

ppvi = p+T (1-p+C)              (A4) 

where p+T  and p+C are the response probabilitiesfor the marker positive patients. The negative predictive value is the probability that a marker negative patient would not do better on T than on C:





npvi = 1-p-T(1-p-C)            (A5)

For response data, the inferred sensitivity and specificity can still be calculated from expressions (3) and (4) using the estimates from (A4) and (A5).  

Bokemeyer et al. (7) reported a comparison of chemotherapy alone versus chemotherapy plus cetuximab for first line colorectal cancer patients. For the patients with wild-type KRAS, the response rates for the control and cetuximab groups were 37% and 60.7% respectively. Using formula (A4), this gives an estimated ppvi of 0.38. For the patients with mutated KRAS (considered marker negative here) the response rates were 48.9% for chemotherapy alone and 32.7% for those receiving cetuximab plus chemotherapy. The npvi computed from formula (A5) is 0.83. Using expressions (3) and (4) with these ppvi and npvi figures together with the prevalence of wild-type KRAS of 57.5% reported for that study gives estimates of sensitivity and specificity of 75.6% and 50% respectively. Based on this analysis, 75% of the patients who will benefit from adding cetuximab to the chemotherapy regimen are wild-type for KRAS but among the patients who don’t benefit, half of them are also wild-type. These estimates are based, however, on the assumption of independence without adjustment for any prognostic factors. 

Incorporating prognostic factors is more complex with binary response than with proportional hazard survival times. One can use a logistic model with prognostic factors included as well as treatment for each marker group. For example, for the marker positive group 
[image: image14.wmf]   where x is the vector of covariates and z the treatment indicator, but the probability of a response with T and a non-response with C for an individual with covariate vector x equals 
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and is not independent of the prognostic covariates as it was in the case of survival times with proportional hazards. Consequently, the analog to (A3) is 
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 where xi denotes the covariate vector for patient i and the summation is over marker positive patients. Similarly
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where the summation is over marker negative patients. 

Binary response data can also be analyzed using the methods of Zhang et al. (8). Their paper was published and came to our attention in the final stages of revision of the current manuscript. It also uses the potential outcomes framework and the assumption of independence conditional on prognostic covariates. It does not deal with survival response however. 

Binary response data can also be analyzed using the methods of Huang et al. (4) Their assumption that if T is better than C for some patients then it is not worse than C for any patients makes the potential outcomes for individual patients identifiable without the assumption of independence. It is a strong assumption however and does not seem valid for the cetuximab data. 

Confidence Intervals

With binary response data, confidence intervals can be obtained for the performance measures in a manner similar to that described above. Specifically, let r+T and n+T denote the number of responders and patients in the marker positive stratum receiving treatment T. Define the numbers of responders and patients in the other strata similarly. Approximate parametric bootstrap confidence limits for the performance measures can be determined by sampling a new 
[image: image18.wmf] from the binomial distribution with parameters r+T /n+T and n+T . Let the new sampled 


[image: image19.wmf].  Similarly, sample a new value of 
[image: image20.wmf]. Use these two new values to compute an estimate of ppvi using (A2). Then sample new values of  
[image: image21.wmf] in the same way and use these estimates to compute an estimate of npvi using (6). Let n+=n+T+n+C  and n-=n-T+n-C . Sample an estimate of the prevalence of marker positivity as described above for survival data.  Use these sampled estimates of ppv,i npvi and prevalence in expressions (3) and (4) to obtain samples of inferred sensitivity and specificity. This sampling is repeated 1000 times or more and the central 95%tile selected as the confidence interval for each performance measure. 

Method of Huang et al. (4)

Binary response data can potentially be analyzed using the methods of Huang et al. (4) Their assumption that if T is better than C for some patients then it is not worse than C for any patients makes the potential outcomes for individual patients identifiable without the assumption of independence. For the cetuximab data, this assumption seems not valid because the patients with KRAS mutations had a substantially lower response rate on cetuximab than on the control regimen while the reverse was true for patients with wild-type KRAS.  Although their method was developed for use with quantitative biomarkers, it can be applied to binary biomarkers. They define the true positive fraction (TPF) and false positive fraction (FPF) that correspond to our definitions of sensitivity and 1-specificity respectively. For a binary marker with prevalence of positivity of ( their formula for TPF (sensitivity) is in our notation 
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where 
[image: image23.wmf] are the treatment effects in the marker positive and marker negative strata respectively. When 
[image: image24.wmf], the TPF (sensitivity) is 1.0. The specificity (1-FPF) value for a binary maker can be expressed using this method as
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If there is no treatment effect in either marker stratum, this specificity measure equals (1-(). If 
[image: image26.wmf]then this measure of specificity equals 0.8. Using these measures of sensitivity and specificity in expressions (3) and (4) one can derive expressions for the ppv and npv. If there is no treatment effect in the marker negative stratum, then the sensitivity and npv are 1.0 and the 
[image: image27.wmf]. 

Although a key assumption of the method of Huang et al. does not seem valid for the data of Bokemeyer et al. (7), if we changed the treatment effect in the KRAS mutated group to 
[image: image28.wmf] with equal response rates of 0.40 for both treatment groups instead of the observed 
[image: image29.wmf], then the sensitivity, specificity, ppv and npv values are approximately 1, 0.8, .25 and 1 respectively calculated for the method of Huang et al. With this change in the data for the KRAS mutated patients, the estimated sensitivity, specificity, ppv and npv values calculated from the methods described here are 0.61, 0.55, 0.38, 0.76. The response rate to cetuximab and control in the KRAS wild-type strata were 60.7% and 37% respectively. The method of Huang et al. assumes that of the 39.3% of patients in that stratum who don’t respond to cetuximab, none would respond to the control regimen. The method based on equations (A4) and (A5) assumes that 37% of those non-responders to cetuximab would have responded to the control regimen. 

Robustness to Assumption of Independence

Marshall and Olkin (5) developed the bivariate exponential distribution and showed that it is the only bivariate distribution with the lack of memory property whose marginal distributions are exponential. The distribution is defined by the bivariate survival function
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We will interpret X as the survival time of a marker positive patient on the test treatment and Y as the survival time of that same patient on the control. The marginal distribution of X is easily seen to be exponential with hazard 
[image: image31.wmf] and the marginal distribution of Y is exponential with hazard 
[image: image32.wmf]. The hazard ratio of C relative to T for the marker positive stratum is thus 


[image: image33.wmf].          (A6)

The ppv is the probability that 
[image: image34.wmf]. Using expression (A4) this can be calculated as
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Expression (A6) uses the bivariate distribution (A4) and is not based on assuming independence. If we assumed independence and used equations (1) and (A5), we would obtain
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which is exactly the same as (A6). Similarly, one can show that the npv, sensitivity and specificity for this bivariate model is exactly the same as the values computed from (2), (3) and (4) assuming independence of X and Y. 
We also evaluated the performance measures (1)-(4) for a wider range of dependencies between potential survival times. We used bivariate Weibull models with dependencies generated by a correlated normal Copula. We specified the marginal distributions of the two potential survival times 
[image: image37.wmf] as Weibull distributions with proportional hazard functions and cumulative distribution functions FX and FY. We generated bivariate potential survival times from correlated normal correlated random variables (X,Y), where X has mean and standard deviation 
[image: image38.wmf] and Y has mean and standard deviation 
[image: image39.wmf]and the correlation coefficient is (. For a sample (x,y), we compute the marginal cumulative probabilities 
[image: image40.wmf]where 
[image: image41.wmf]denotes the cumulative normal distribution function. The correlated potential survival times are 
[image: image42.wmf]. We generated correlated bivariate survival times from these models in which the marginal Weibull models had a hazard ratio 2. When the correlation (=0, we verified that ppvi = ppv = 2/(1+2)=.67. As the correlation increased, the ppvi under-estimated the true ppv. For example, when (=0.5, 

ppvi = .67 but the true ppv computed from the potential survival times was .725. When the correlation ( was negative, ppvi somewhat over-estimated ppv. For example, when (=-0.5, ppvi =.67 but ppv=.637. 
_1353848759.unknown

_1357987108.unknown

_1362578064.unknown

_1362643261.unknown

_1362643710.unknown

_1362643770.unknown

_1362643457.unknown

_1362579842.unknown

_1362643106.unknown

_1362581699.unknown

_1362579793.unknown

_1357987417.unknown

_1362575756.unknown

_1362576709.unknown

_1362576073.unknown

_1362575504.unknown

_1357987465.unknown

_1357987220.unknown

_1357987354.unknown

_1357987143.unknown

_1353849245.unknown

_1357832274.unknown

_1357986956.unknown

_1357986985.unknown

_1357832516.unknown

_1357832802.unknown

_1357832884.unknown

_1357832656.unknown

_1357832335.unknown

_1353849334.unknown

_1353849476.unknown

_1353849280.unknown

_1353849150.unknown

_1353849209.unknown

_1353848799.unknown

_1353847898.unknown

_1353848592.unknown

_1353848703.unknown

_1353847941.unknown

_1353847717.unknown

_1353847768.unknown

_1348920842.unknown

