
Key Features in the Design and 
Analysis of DNA Microarray 

Studies
Richard Simon, D.Sc.

Chief, Biometric Research Branch
National Cancer Institute

http://linus.nci.nih.gov/brb



http://linus.nci.nih.gov/brb

• Powerpoint presentation
• Reprints, Technical Reports, Presentatio
• BRB-ArrayTools software



Experimental Design
• Dobbin K, Simon R. Comparison of microarray designs for class 

comparison and class discovery. Bioinformatics 18:1462-9, 2002
• Dobbin K, Shih J, Simon R. Statistical design of reverse dye 

microarrays. Bioinformatics 19:803-10, 2003
• Dobbin K, Shih J, Simon R. Questions and answers on the design of 

dual-label microarrays for identifying differentially expressed genes, 
JNCI 95:1362-69, 2003

• Simon R, Korn E, McShane L, Radmacher M, Wright G, Zhao Y. 
Design and analysis of DNA microarray investigations, Springer 
Verlag (2003)

• Simon R, Dobbin K. Experimental design of DNA microarray 
experiments. Biotechniques 34:1-5, 2002

• Simon R, Radmacher MD, Dobbin K. Design of studies with DNA 
microarrays. Genetic Epidemiology 23:21-36, 2002

• Dobbin K, Simon R. Sample size determination in microarray 
experiments for class comparison and prognostic classification. 
Biostatistics (In Press)



Class Prediction

• Simon R, Radmacher MD, Dobbin K, McShane LM. Pitfalls in the 
analysis of DNA microarray data: Class prediction methods. Journal 
of the National Cancer Institute 95:14-18, 2003

• Radmacher MD, McShane LM and Simon R. A paradigm for class 
prediction using gene expression profiles. Journal of Computational 
Biology 9:505-511, 2002

• Simon R. Using DNA microarrays for diagnostic and prognostic 
prediction. Expert Review of Molecular Diagnostics 3:587-595, 
2003

• Simon R. Diagnostic and prognostic prediction using gene 
expression profiles in high dimensional microarray data. British
Journal of Cancer 89:1599-1604, 2003



Class Comparison
• Korn EL, McShane LM, Troendle JF, Rosenwald A and Simon R. 

Identifying pre-post chemotherapy  differences in gene expression in 
breast tumors: a statistical method appropriate for this aim. British 
Journal of Cancer 86:1093-1096, 2002

• Korn EL, Troendle JF, McShane LM, and Simon R. Controlling the 
number of false discoveries: Application to high-dimensional genomic 
data. Journal of Statistical Planning and Inference 124:379-398, 2004

• Wright G.W. and Simon R. A random variance model for detection of 
differential gene expression in small microarray experiments. 
Bioinformatics 19:2448-55, 2003



Outline of Presentation

• Design

• Development and validation of predictive 
models

• Software for microarray data analysis



Myth

• That microarray investigations are 
unstructured data-mining adventures 
without clear objectives



• Good microarray studies have clear 
objectives, but not generally gene specific 
mechanistic hypotheses

• Design and Analysis Methods Should Be 
Tailored to Study Objectives



Common Types of Objectives

• Class Comparison
– Identify genes differentially expressed among 

predefined classes. 

• Class Prediction
– Develop multi-gene predictor of class label for a 

sample using its gene expression profile

• Class Discovery
– Discover clusters among specimens or among genes



Do Expression Profiles Differ for 
Defined Classes of Samples?

• Not a clustering problem
– Global similarity measures generally used for clustering 

arrays may not distinguish classes
– Selecting features and then clustering will give good 

separation even for classes which do not differ unless 
the false discovery rate is controlled in feature selection

• Supervised methods are better
• Requires multiple biological samples from each 

class



Myth

• That comparing tissues or experimental conditions 
is based on looking for red or green spots on a 
single array

• That comparing tissues or experimental conditions 
is based on using Affymetrix MAS software to 
compare two arrays

• Many published statistical methods are limited to 
comparing rna transcript profiles from two 
samples 



• Comparing expression in two RNA samples 
tells you (at most) only about those two 
samples and may relate more to sample 
handling than to biology. Robust knowledge 
requires multiple samples that reflect 
biological variability.



Levels of Replication

• Technical replicates
– RNA sample divided into multiple aliquots and re-

arrayed
• Biological replicates

– Multiple subjects 
– Re-growth of cell culture under fixed conditions



• For comparing two rna samples, technical 
replicates are important.

• For comparing average expression between 
two or more conditions, time points after an 
intervention  or between kinds of tissues, 
technical replicates do not help much. 
– Biological conclusions require independent 

biological replicates. The power of statistical 
methods for microarray data depends on the 
number of biological replicates.



Allocation of Specimens to
Dual Label Arrays for Simple 
Class Comparison Problems 

• Reference Design
• Balanced Block Design
• Loop Design 



Reference Design

A1

R

A2 B1 B2

R

RED

R RGREEN

Array 1 Array 2 Array 3 Array 4

Ai = ith specimen from class A

Bi = ith specimen from class B
R = aliquot from reference pool



• The reference provides a relative measure 
of expression for a given gene in a given 
sample that is less variable than an absolute 
measure. 

• The relative measure of expression will be 
compared among biologically independent 
samples from different classes.





Balanced Block Design
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Loop Design
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• Detailed comparisons of the effectiveness of 
designs: 
– Dobbin K, Simon R. Comparison of microarray designs 

for class comparison and class discovery. 
Bioinformatics 18:1462-9, 2002

– Dobbin K, Shih J, Simon R. Statistical design of 
reverse dye microarrays. Bioinformatics 19:803-10, 
2003

– Dobbin K, Simon R. Questions and answers on the 
design of dual-label microarrays for identifying 
differentially expressed genes, JNCI 95:1362-1369, 
2003



Common Reference Designs

• Very effective for many microarray studies. 
• Robust to bad arrays
• Permit many class variables to be examined
• Efficient for clustering
• Permit class predictors to be develooped
• Permit comparisons among separate 

experiments utilizing the same common 
reference 



Loop Designs

• Useful for studies using technical replicates 
with one rna sample from each class

• Useful for simple time series experiments 
• Not robust to poor arrays
• Inefficient for class discovery (clustering) 

analyses
• Not applicable to class prediction analyses  



Balanced Block Designs

• Very efficient for simple two class comparison 
problems
– require many fewer arrays for the same number of 

samples as the common reference design

• More difficult to apply to class comparison studies 
with more than two classes or multiple class 
variables

• Not effective for class discovery or class 
prediction



Dye Bias

• Average differences among dyes in label 
concentration, labeling efficiency and 
photon detection efficiency are corrected by 
normalization procedures

• Gene specific dye bias may not be corrected 
by normalization 



Cell Line 
Name

Number of 
oligonucleotide
arrays (Number 
with reference 
green/Cy3)

Number of cDNA Arrays 
(Number with reference 
green/Cy3)

Description

MCF10a 4 (2) 4 (2) Human mammary 
epithelial cell line

LNCAP 4 (2) 4 (2) Human prostate cancer 
cell line

L428 9 (4) 7 (4) Hodgkins disease cell 
line

SUDHL 4 (2) 4 (2) Human lymphoma cell 
line

OCILY3 5 (3) 5 (3) Human lymphoma cell 
line

Jurkat 4 (2) 4 (2) Human T lymphocyte 
acute T cell leukemia cell 
line

Total 30 (15) 28 (15)



cDNA experiment estimated sizes of the gene-specific dye bias for each of 
the 8,604 genes.  An effect of size 1 corresponds to a 2-fold change in 

expression
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Myth

• For two color microarrays, each sample of 
interest should be labeled once with Cy3 
and once with Cy5 in dye-swap pairs of 
arrays.  



Dye swap technical replicates of 
the same two rna samples are 

rarely necessary



Common Reference Design

• Dye swap arrays are not necessary for valid 
comparisons of classes since specimens 
labeled with different dyes are never 
compared.

• Dye bias is the same for all classes and 
cancels in comparing classes



Direct Comparison Designs

• Analysis of variance should be used to analyze the 
data in a manner that adjusts class comparisons for 
dye bias

• It is more efficient to balance the dye-class 
assignments for independent biological specimens 
(balanced block design)  than to do dye swap 
technical replicates 
– Dye bias is estimatable in the balanced block design 

without using dye-swap technical replicates



Sample Size Planning

• GOAL: Identify genes differentially expressed in a comparison of two 
pre-defined classes of specimens using single label arrays

• Compare classes separately by gene with adjustment for multiple 
comparisons

• Approximate expression levels (log signal) as normally distributed

• Determine number of samples n/2 per class to give power 1-β for 
detecting mean difference δ at level α



Single Label Arrays
Comparing 2 equal size classes
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• m = number of technical reps per sample
• n = total number of arrays
• δ = mean difference between classes in log signal
• τ2 = biological variance within class of log signal
• γ2 = variance among technical replicates
• α = significance level e.g. 0.001
• 1-β = power
• z = normal percentiles (use t percentiles for better 

accuracy)



Dual Label Arrays With Reference Design
Comparing 2 equal size classes

( )
2

/ 2 2 24 2 /g

z z
n m mα β τ γ

δ
+⎡ ⎤

= +⎢ ⎥
⎣ ⎦



• m = number of technical reps per sample
• n = total number of arrays
• δ = mean difference between classes in log ratio
• τ2 = biological variance within class of log ratios
• γ2 = technical variance of log ratios
• α = significance level e.g. 0.001
• 1-β = power
• z = normal percentiles (use t percentiles for better 

accuracy)



α=0.001 β=0.05 δ=1 
τ2+2γ2=0.25, τ2/γ2=4

human tumors

m technical reps n arrays 
required

samples 
required

1 25 25

2 42 21

3 60 20

4 76 19



Controlling Expected False 
Discovery Rate

π
Proportion of 

differentially expressed 
genes

α
Significance level per 

test

β
Statistical power per test

FDR

0.01 0.001 0.10 9.9%

0.01 0.005 0.10 35.5%



Can I reduce the number of 
arrays by pooling specimens?

• Pooling all specimens is inadvisable because 
conclusions are limited to the specific RNA pool, 
not to the populations since there is no estimate of 
variation among pools

• With multiple biologically independent pools, 
some reduction in number of arrays may be 
possible at the cost of a large increase in number 
of samples required



Dual Label Arrays With Reference Design
Pools of k Biological Samples
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Number of arrays and samples required for various pooling levels.  An independent pool is 
constructed for each array, so that no sample is represented on more than one array. 

α=0.001, β=0.05, δ=1, τ2=0.384, γ2=0.054, m=14/ 22 =gg στ 25.2 22 =+ gg στ

Number of samples 
pooled on each array

Number of arrays 
required

Number of samples 
required

1 48 48

2 30 60

3 23 69

4 20 80



Avoid Confounding

• Avoid confounding tissue handling and 
microarray assay procedures with the 
classes to be distinguished
– Date assay performed
– Print set



Components of Class Prediction

• Feature selection
– Which genes or proteins will be included in the 

model
• Select model type 

– E.g. DLDA, Nearest-Neighbor, …
• Fitting parameters (regression coefficients) 

for model 



Feature Selection
• Usually features are selected that are univariately

differentially expressed among the classes at a 
specified significance level (e.g. 0.001) 

• Complex methods attempt to identify features 
which together give accurate predictions.

• Very limited evidence that complex feature 
selection is useful in microarray problems
– Failure to compare to simpler methods
– Some published complex methods for selecting 

combinations of features do not appear to have been 
properly evaluated



Linear Classifiers for Two Classes
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Linear Classifiers for Two Classes

• Fisher linear discriminant analysis (weights based 
on assumed multivariate normal distribution of 
expression vector in each class with common 
covariance matrix)

• Diagonal linear discriminant analysis (DLDA) 
assumes features are uncorrelated
– Naïve Bayes estimator

• Compound covariate predictor (Radmacher) and  
Golub’s method are similar to DLDA in that they 
can be viewed as weighted voting of univariate
classifiers



Linear Classifiers for Two Classes

• Support vector machines with inner product 
kernel are linear classifiers with weights 
determined to minimize errors

• Perceptrons are linear classifiers 



When p>>n

• For the linear model, many weight vectors w can 
always be found that give zero classification errors 
for the training data.
– p>>n problems are almost always linearly separable

• Why consider more complex models?
• The number of parameters for this simple model is 

generally too large relative to the number of 
specimens to achieve accurate prediction for 
future samples if we select a single model by 
minimizing training errors



Myth

• That complex classification algorithms such 
as neural networks perform better than 
simpler methods for class prediction.



• Artificial intelligence sells to naïve journal 
reviewers and readers. 

• Comparative studies indicate that simpler 
methods that avoid overfitting work better 
for p>>n problems. 
– DLDA, Compound covariate predictor, linear 

SVM, nearest neighbor and nearest (shrunken) 
centroid methods



Evaluating a Classifier

• Fit of a model to the same data used to 
develop it is no evidence of prediction 
accuracy for independent data.



Split-Sample Evaluation

• Training-set
– Used to select features, select model type, determine 

parameters and cut-off thresholds

• Test-set
– Withheld until a single model is fully specified using 

the training-set.
– Fully specified model is applied to the expression 

profiles in the test-set to predict class labels. 
– Number of errors is counted
– Ideally test set data is from different centers than the 

training data and assayed at a different time



Leave-one-out Cross Validation

• Omit sample 1
– Develop multivariate classifier from scratch on 

training set with sample 1 omitted
– Predict class for sample 1 and record whether 

prediction is correct



Leave-one-out Cross Validation

• Repeat analysis for training sets with each single 
sample omitted one at a time

• e = number of misclassifications determined by 
cross-validation

• Subdivide e for estimation of sensitivity and 
specificity



• Cross validation is only valid if the test set is not used in any 
way in the development of the model. Using the complete set 
of samples to select genes violates this assumption and 
invalidates cross-validation.

• With proper cross-validation, the model must be developed 
from scratch for each leave-one-out training set. This means 
that feature selection must be repeated for each leave-one-out 
training set. 

• The cross-validated estimate of misclassification error is an 
estimate of the prediction error for model fit using specified 
algorithm to full dataset

• If you use cross-validation estimates of prediction error for a 
set of algorithms and select the algorithm with the smallest cv
error estimate, you do not have a valid estimate of the 
prediction error for the selected model



Prediction on Simulated Null Data

Generation of Gene Expression Profiles
• 14 specimens (Pi is the expression profile for specimen i)
• Log-ratio measurements on 6000 genes
• Pi ~ MVN(0, I6000)
• Can we distinguish between the first 7 specimens (Class 1) and the last 7 

(Class 2)?

Prediction Method
• Compound covariate prediction (discussed later)
• Compound covariate built from the log-ratios of the 10 most differentially 

expressed genes.



Number of misclassifications
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Permutation Distribution of Cross-
validated Misclassification Rate of a 

Multivariate Classifier
• Randomly permute class labels and repeat 

the entire cross-validation
• Re-do for all (or 1000) random 

permutations of class labels
• Permutation p value is fraction of random 

permutations that gave as few 
misclassifications as e in the real data



Gene-Expression Profiles in 
Hereditary Breast Cancer 

cDNA Microarrays
Parallel Gene Expression Analysis • Breast tumors studied:

7 BRCA1+ tumors
8 BRCA2+ tumors
7 sporadic tumors

• Log-ratios measurements of 
3226 genes for each tumor 
after initial data filtering

Can we distinguish BRCA1+ from BRCA1– cancers and BRCA2+ from 
BRCA2– cancers based solely on their gene expression profiles?



BRCA1

 
αg 

 
# of 

significant 
genes 

 
# of misclassified 

samples (m) 
 

% of random 
permutations with 

m or fewer 
misclassifications 

10-2 182 3  0.4 
10-3 53 2  1.0 
10-4 9 1  0.2 

 



BRCA2

αg # of significant
genes

m = # of misclassified elements
(misclassified samples)

% of random
permutations with m

or fewer
misclassifications

10-2 212 4 (s11900, s14486, s14572, s14324) 0.8
10-3 49 3 (s11900, s14486, s14324) 2.2
10-4 11 4 (s11900, s14486, s14616, s14324) 6.6



Classification of BRCA2 Germline
Mutations

Classification Method LOOCV Prediction Error 

Compound Covariate Predictor 14%

Fisher LDA 36%

Diagonal LDA 14%

1-Nearest Neighbor 9%

3-Nearest Neighbor 23%

Support Vector Machine
(linear kernel)

18%

Classification Tree 45%



Invalid Criticisms of Cross-
Validation

• “You can always find a set of features that 
will provide perfect prediction for the 
training and test sets.”
– For complex models, there may be many sets of 

features that provide zero training errors. 
– A modeling strategy that either selects among 

those sets or aggregates among those models, 
will have a generalization error which will be 
validly estimated by cross-validation.



BRB ArrayTools:
An integrated Package for the 
Analysis of DNA Microarray 

Data 

http://linus.nci.nih.gov/brb



BRB-ArrayTools

• Integrated software package using Excel-based 
user interface but state-of-the art analysis 
methods programmed in R, Java & Fortran

• Publicly available for non-commercial use

http://linus.nci.nih.gov/brb



Selected Features of BRB-ArrayTools
• Multivariate permutation tests for class comparison to control false discovery proportion 

with any specified confidence level
• SAM
• Find Gene Ontology groups and signaling pathways that are differentially expressed
• Survival analysis
• Analysis of variance
• Class prediction models (7) with prediction error estimated by LOOCV, k-fold CV or 

.632 bootstrap, and permutation analysis of cross-validated error rate
– DLDA, SVM, CCP, Nearest Neighbor, Nearest Centroid, Shrunken Centroids, Random Forests

• Clustering tools for class discovery with reproducibility statistics on clusters
– Built in access to Eisen’s Cluster and Treeview

• Visualization tools including rotating 3D principal components plot exportable to 
Powerpoint with rotation controls

• Import of Affy CEL files and apply RMA probe processing and quantile normalization 
• Extensible via R plug-in feature
• Links genes to annotations in genomic databases
• Tutorials and datasets
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